scholarly journals The Influence of Seasonality on Secondary Metabolite Profiles and Neuroprotective Activities of Moss Hypnum cupressiforme Extracts: In Vitro and In Silico Study

Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Tanja M. Lunić ◽  
Marija R. Mandić ◽  
Mariana M. Oalđe Pavlović ◽  
Aneta D. Sabovljević ◽  
Marko S. Sabovljević ◽  
...  

Numerous representatives of mosses, including Hypnum cupressiforme, have been used to alleviate different inflammation-related conditions. However, the mode of action underlying this anti-inflammatory potential has been poorly understood. Moreover, the influence of seasonality on the chemical composition and biological activity of mosses is generally overlooked. This study aimed to investigate the influence of seasonal changes (spring, summer, and autumn) on secondary metabolite composition and biological activities of ethyl acetate H. cupressiforme extracts. Antioxidant activity was measured using β-carotene bleaching assay, while MTT, NBT, ELISA, and Griess assays were carried out to explore the anti-neuroinflammatory and neuroprotective potential of extracts. Inhibitory activities on acetylcholinesterase and tyrosinase were assessed experimentally and by docking analysis. The highest content of secondary metabolites and antioxidant activity were observed in moss during the summer. Extracts inhibited the secretion of ROS, NO, TNF-α, and IL-6, alleviating the inflammatory potential of H2O2 and LPS in microglial and neuronal cells. Strong inhibitory effects on acetylcholinesterase and tyrosinase were observed in vitro. Docking analyses revealed high-affinity interactions of secondary metabolites present in H. cupressiforme with important enzyme residues. Altogether, these results reveal the neuroprotective potential and the significance of seasonal fluctuations on secondary metabolite content and biological activities in moss H. cupressiforme.

2019 ◽  
Vol 10 ◽  
pp. 10-15
Author(s):  
Nurul Yasmin ◽  
Wahyu ◽  
Angga

Secondary metabolites produced by plants have been known to have a variety of biological activities including antioxidants that serve to ward off oxidant compounds and free radicals. The roots of merung (Coptosapelta tomentosa) has been known to have strong activity as an antioxidant while antioxidant activity in the stem is not yet known to date.  This research aims to determine the secondary metabolites that have antioxidant activity on the root extracts and the stem of the vines qualitatively. The root extract and the stem of the merung plant are extracted with a methanol solvent using the maceration method. Antioxidant activity and identification of secondary metabolites are carried out qualitatively by the method of autography using the 2.2-Diphenyl-1-Picrylhydrazyl compound (DPPH) and some reagents of the secondary metabolite. Antioxidant activity of the merung root extract is on spot with RF 0.08 and 0.66. Spot with the RF 0.66 shows the brown color when reacted FeCl3, fluorescent yellow in UV rays 254 and 366 nm after reacted AlCl3 and red when reacted with KOH. The antioxidant activity of the merung stem extracts is at Rf 0.16, 0.33, 0.58, 0.66, and 0.75. Spot with the Rf 0.16 shows the color of brown when reacted FeCl3 and fluorescent blue in UV rays 254 and 366 nm after reacted AlCl3. Secondary metabolites that have antioxidant activity on root extracts and stems are suspected to be derivative phenolic compounds derived from flavonoid compounds.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Adean Mayasri

One of the sea potentials in Aceh is seaweed. Seaweed contains secondary metabolites and antioxidants that are very well consumed because it can act as an antidote/protector from the free radicals. This study aimed to determine the secondary metabolite content and antioxidant activity of seaweed in Aceh.The seaweed that has been macerated then screened for phytochemicals and tested for antioxidant activity by using the DPPH method. The seaweed species found were Gracillaria verrucosa, Sargassum sp., and Chaetomorpha antennina. The results of this study indicated that Gracillaria verrucosa, Sargassum sp., and Chaetomorpha antennina seaweeds were contained by alkaloids and steroids. Flavonoid and saponins were only detected in the types of seaweed Gracillaria verrucosa and Sargassum sp. It was also found that the higher the concentration of the extract, the higher the percentage of IC50 against free radicals. The Sargassum sp. has a stable percentage of inhibition at a 2-10 ppm concentration, so it is recommended in this study to be considered cultivated in Aceh.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


2016 ◽  
Vol 7 (8) ◽  
pp. 3410-3420 ◽  
Author(s):  
Vermont P. Dia ◽  
Philipus Pangloli ◽  
Lynsey Jones ◽  
Angela McClure ◽  
Anjali Patel

Sorghum alcoholic extracts exhibited antioxidant activity and capability to inhibit and chemosensitize ovarian cancer cells in vitro.


2021 ◽  
Vol 869 (1) ◽  
pp. 012010
Author(s):  
S Agustina ◽  
S Bella ◽  
S Karina ◽  
I Irwan ◽  
M Ulfah

Abstract Identification of sea cucumbers from Benteng Inong Balee, Aceh Besar and their phytochemistry screening were conducted in December 2020 to January 2021 at Laboratory of Marine Chemistry and Fisheries Biotechnology, Universitas Syiah Kuala. The purpose of this study was to identify the species of sea cucumbers and its secondary metabolite content using phytochemistry screening and column chromatography. The species of sea cucumbers that were identified was Holothuria atra. The extraction method used in sea cucumber extraction was maceration method, while the separation of secondary metabolites used column-chromatography with eluent of n-hexane : ethyl acetate (8:4). The results showed that secondary metabolites obtained from phytochemical tests were flavonoids, saponins and triterpenoids.


2019 ◽  
Vol 7 (6) ◽  
pp. 166 ◽  
Author(s):  
Ignacio Sottorff ◽  
Jutta Wiese ◽  
Matthias Lipfert ◽  
Nils Preußke ◽  
Frank D. Sönnichsen ◽  
...  

As Streptomyces have shown an outstanding capacity for drug production, different campaigns in geographically distant locations currently aim to isolate new antibiotic producers. However, many of these newly isolated Streptomyces strains are classified as identical to already described species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology are possible, we compared two Streptomyces strains with identical 16S rRNA gene sequences but geographically distant origins. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp. SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM 40236T isolated from Russian garden soil. Compared traits included phylogenetic relatedness based on 16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and secondary metabolite profiles. Both Streptomyces strains shared several common features, such as morphology and core secondary metabolite production. They revealed differences in pigmentation and in the production of accessory secondary metabolites which appear to be strain-specific. In conclusion, despite identical 16S rRNA classification Streptomyces strains can present different secondary metabolite profiles and may well be valuable for consideration in processes for drug discovery.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2386 ◽  
Author(s):  
Delgadillo Claudia ◽  
Cuchillo-Hilario Mario ◽  
Navarro Arturo ◽  
Medina-Campos Omar Noel ◽  
Nieto Antonio ◽  
...  

Background: Acacia farnesiana (AF) pods have been traditionally used to treat dyspepsia, diarrhea and topically for dermal inflammation. Main objectives: (1) investigate the antioxidant activity and protection against oxidative-induced damage of six extracts from AF pods and (2) their capacity to curb the inflammation process as well as to down-regulate the pro-inflammatory mediators. Methods: Five organic extracts (chloroformic, hexanic, ketonic, methanolic, methanolic:aqueous and one aqueous extract) were obtained and analyzed by UPLC-ESI-Q-oa/TOF-MS. Antioxidant activity (DPPH•, ORAC and FRAP assays) and lipid peroxidation (TBARS assay) were performed. Assessment of anti-inflammatory properties was made by the ear edema induced model in CD-1 mice and MPO activity assay. Likewise, histological analysis, IL-1β, IL-6, IL-10, TNF-α, COX measurements plus nitrite and immunohistochemistry analysis were carried out. Results: Methyl gallate, gallic acid, galloyl glucose isomer 1, galloyl glucose isomer 2, galloyl glucose isomer 3, digalloyl glucose isomer 1, digalloyl glucose isomer 2, digalloyl glucose isomer 3, digalloyl glucose isomer 4, hydroxytyrosol acetate, quinic acid, and caffeoylmalic acid were identified. Both organic and aqueous extracts displayed antioxidant activity. All extracts exhibited a positive effect on the interleukins, COX and immunohistochemistry assays. Conclusion: All AF pod extracts can be effective as antioxidant and topical anti-inflammatory agents.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 129
Author(s):  
Dario Matulja ◽  
Maria Kolympadi Markovic ◽  
Gabriela Ambrožić ◽  
Sylvain Laclef ◽  
Sandra Kraljević Pavelić ◽  
...  

Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.


Sign in / Sign up

Export Citation Format

Share Document