scholarly journals Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.

Author(s):  
Kady Diatta ◽  
William Diatta ◽  
Alioune Dior Fall ◽  
Serigne Ibra Mbacké Dieng ◽  
Amadou Ibrahima Mbaye ◽  
...  

Background : Nowadays with the appearance of diseases such as cancer, atherosclerosis, free radicals are often singled out. What motivates scientific research in natural antioxidants. Aim/Objective : The aim of this study was to determine the antioxidant activity of the stalks and the fruit of Solanum melongena L. Study Duration : The period of the study was done on 25th July, 2015 at the Department of Pharmacy, Faculty of Medecine, Pharmacy and Odontology, University of Dakar, Senegal. Methodology : Antioxidant activity was evaluated through two methods (DPPH and FRAP). Results : For the FRAP test, at the highest concentration (83.3 µg/ml) the aqueous extract of the fruit (0.90±0.08) has a higher reducing power compared to those of ethanol extracts from the fruit (0.77±0.41) and the stalk (0.85±0.004). These results remain inferior to that of tannic acid (0.95± 0.0005). The DPPH test reveals that the ethanolic extract of the fruit is more effective in reducing the free radical DPPH with an inhibitory concentration 50 (IC 50) equal to 3.37±0.03 μg / ml, followed by the ethanolic extract of the stalks (IC 50 = 4.46±0.24 μg / ml) and finally the aqueous extract of the fruit (IC50 = 9.6±0.026 μg / ml). Conclusion : These results make it possible to confirm the in vitro activity of the parts studied, but in vivo studies are necessary in order to know the acute and chronic toxicities. Finally, perform a bio-guided fractionation to determine the molecules responsible for the antioxidant activity.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


2020 ◽  
Vol 26 (16) ◽  
pp. 1759-1777 ◽  
Author(s):  
Tatiane F. Vieira ◽  
Rúbia C. G. Corrêa ◽  
Rosely A. Peralta ◽  
Regina F. Peralta-Muniz-Moreira ◽  
Adelar Bracht ◽  
...  

Background: Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. Methods: The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. Results: The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. Conclusion: A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.


2019 ◽  
Vol 8 (4) ◽  
pp. 48-52
Author(s):  
O. V. Trineeva

Introduction. Recently, much attention has been paid to the primary assessment of the pharmacological effect of various drugs using in vivo and in vitro tests. It is known that such a medicinal plant as sea buckthorn, in its phytochemical composition is rich in natural antioxidants: carotenoids, tocopherols, flavonoids, ascorbic acid, etc. In some publications there is information about the antioxidant activity of sea buckthorn and fatty oil based on them. However, information on the comparative characteristics of the use of various methods for determining the antioxidant activity of this type of medicinal plant material and the results obtained are not found in the scientific literature.Aim. The aim of this work was a comparative determination of the antioxidant activity of medicinal plant material of buckthorn fruits of various species of buckthorn.Materials and methods. The total antioxidant activity of water and water-alcohol extracts from the fruits of sea buckthorn fruits was determined using various techniques recommended in the literature. The antioxidant activity of the extracts was determined by permanganometric titration, in vitro inhibition of adrenaline autooxidation, and also in a biological model, Parametium caudatum cell culture.Results and discussion. The effect of the extractant polarity on the value of antioxidant activity was studied. It was found that the highest content of antioxidants in the extraction is observed when using 96 % ethanol as an extractant.Conclusion. Using three methods, the prospects of using sea buckthorn fruits and preparations based on them as a source of antioxidants are shown. 


2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


2013 ◽  
Vol 101 (9) ◽  
pp. 585-593 ◽  
Author(s):  
M. Ozkan ◽  
F. Z. Biber Muftuler ◽  
A. Yurt Kilcar ◽  
E. I. Medine ◽  
P. Unak

Summary It is known that medicinal plants like olive have biological activities due to their flavonoid content such as olueropein, tyrosol, hydroxytyrosol etc. In current study, hydroxytrosol (HT) which is one of the major phenolic compounds in olive, olive leaves and olive oil, was isolated after methanol extraction and purification of olive leaves which are grown in the northern Anatolia region of Turkey. The isolated HT was radiolabeled with 131I (131I-HT) and the bioaffinity of this radiolabeled component of olive leaves extract was investigated by using in vivo/in vitro methods. It was found that HT could be radiolabeled with 131I in yields of 95.6±4.4% (n = 8), and in vivo studies showed that 131I-HT is taken up by urinary bladder, stomach, small intestine, large intestine, breast and prostate. Significant incorporation of activity was observed in cell lines via in vitro studies.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3303 ◽  
Author(s):  
Wanda Mączka ◽  
Katarzyna Wińska ◽  
Małgorzata Grabarczyk

Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ranran Hou ◽  
Qiu Li ◽  
Jie Liu ◽  
Yuanliang Hu

The Atractylodes macrocephala polysaccharide (AMP) was extracted by water extracting-alcohol precipitating method and further purified by DEAE column. After that, the polysaccharides were modified by nitric acid-sodium selenite method, and nine kinds of selenizing AMPs (sAMPs) were obtained, namely, from sAMP1 to sAMP9. AMP and sAMP were characterized using FTIR spectrometry. Then their antioxidant activities in vitro were measured by free radical-scavenging test. Among these, sAMP6 presented the strongest antioxidant effect. For the test in vivo, the chickens at day 14 vaccinated with ND vaccine were repeatedly vaccinated at day 28. The chickens in sAMP and AMP were injected respectively with 1 mg of sAMP6 and AMP and, in vaccination control (VC) and BC groups, injected with equal volume of normal saline. Respectively, after the first vaccine, on days 7, 14, 21, and 28, the serum GSH-Px and SOD activities and MDA content were determined. The results suggested that sAMP6 could significantly promote GSH-Px and SOD activities and decrease MDA content. All these results indicated that selenylation modification could significantly enhance the antioxidant activity of AMP.


2000 ◽  
pp. 79-83 ◽  
Author(s):  
W Abplanalp ◽  
MD Scheiber ◽  
K Moon ◽  
B Kessel ◽  
JH Liu ◽  
...  

Estrogens possess strong antioxidant effects in vitro, but in vivo studies in humans have yielded conflicting results. Little is known regarding factors that mediate the antioxidant effect of estrogens in vivo. In this study the potential role of high density lipoprotein (HDL) was examined. The antioxidant effect of estradiol-17beta (E2) added to low density lipoprotein (LDL) was lost after dialysis. In contrast, the antioxidant effect of E2 added to HDL was conserved after dialysis, suggesting that E2 was bound to HDL. Binding of E2 to LDL increased after esterification (especially to long chain fatty acids). In the presence of HDL, an increased amount of E2 was transferred to LDL. E2-17 ester was as potent as E2 in preventing LDL oxidation in vitro, but 3,17-diesters were not as effective (E2=E2-17 ester>E2-3 ester>E2-3,17 diester). This was also supported by experiments which showed that estrogens with masked 3-OH groups were not effective as antioxidants. These studies provide evidence that HDL could facilitate the antioxidant effect of E2 through initial association, esterification and eventual transfer of E2 esters to LDL. Therefore it is critical that HDL peroxidation parameters be evaluated in subjects receiving estrogen replacement therapy.


Sign in / Sign up

Export Citation Format

Share Document