scholarly journals Prospects of Arbuscular Mycorrhizal Fungi Utilization in Production of Allium Plants

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 279 ◽  
Author(s):  
Nadezhda Golubkina ◽  
Leonid Krivenkov ◽  
Agnieszka Sekara ◽  
Viliana Vasileva ◽  
Alessio Tallarita ◽  
...  

The need to improve crop yield and quality, decrease the level of mineral fertilizers and pesticides/herbicides supply, and increase plants’ immunity are important topics of agriculture in the 21st century. In this respect, arbuscular mycorrhizal fungi (AMF) may be considered as a crucial tool in the development of a modern environmentally friendly agriculture. The efficiency of AMF application is connected to genetic peculiarities of plant and AMF species, soil characteristics and environmental factors, including biotic and abiotic stresses, temperature, and precipitation. Among vegetable crops, Allium species are particularly reactive to soil mycorrhiza, due to their less expanded root apparatus surface compared to most other species. Moreover, Allium crops are economically important and able to synthesize powerful anti-carcinogen compounds, such as selenomethyl selenocysteine and gamma-glutamyl selenomethyl selenocysteine, which highlights the importance of the present detailed discussion about the AMF use prospects to enhance Allium plant growth and development. This review reports the available information describing the AMF effects on the seasonal, inter-, and intra-species variations of yield, biochemical characteristics, and mineral composition of Allium species, with a special focus on the selenium accumulation both in ordinary conditions and under selenium supply.

2020 ◽  
Vol 47 (No. 2) ◽  
pp. 122-129
Author(s):  
Sławomir Głuszek ◽  
Edyta Derkowska ◽  
Lidia Sas Paszt ◽  
Mirosław Sitarek ◽  
Beata Sumorok

The experiment assessed the influence of various biofertilizers and biostimulants on the growth characteristics of the root system, its colonization by arbuscular mycorrhizal fungi and the yielding of sweet cherry trees in field conditions. The experiment, conducted in Pomological Orchard of Research Institute of Horticulture located in Skierniewice during 2011–2014, involved the use of a mycorrhizal substrate, organic fertilizers and biostimulant in randomised block design. The control combination consisted of plants fertilized with mineral fertilizers (NPK). The use of the organic fertilizer BF Ekomix in dose 100 g per tree each year in the spring significantly increased the number of root tips in comparison with the control trees. There was also a tendency for the roots to lengthen and increase their surface area under the influence of this biofertilizer. In addition, the inoculation of roots with the mycorrhizal substrate in dose 200 g per tree per year stimulated the colonization of the roots of sweet cherry trees by arbuscular mycorrhizal fungi, which in turn led to improved root growth parameters.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Anna Lisek ◽  
Lidia Sas Paszt ◽  
Beata Sumorok

Summary In organic farming, mineral fertilizers are replaced by various preparations to stimulate plant growth and development. Introduction of new biopreparations into horticultural production requires an assessment of their effects on the growth and yielding of plants. Among the important indicators of the impact on plants of beneficial microorganisms contained in bioproducts is determination of their effectiveness in stimulating the growth and yielding of plants. Moreover, confirmation of the presence of arbuscular mycorrhizal (AM) fungi in the roots and plant growth promoting rhizobacteria (PGPR) in the rhizosphere is also necessary. In addition to conventional methods, molecular biology techniques are increasingly used to allow detection and identification of AM fungi in plant roots. The aim of this study was identification and initial taxonomic classification of AM fungi in the roots of ‘Elkat’ strawberry plants fertilized with various biopreparations using the technique of nested PCR. Tests were performed on DNA obtained from the roots of ‘Elkat’ strawberry plants: not fertilized, treated with 10 different biopreparations, or fertilized with NPK. Amplification of the large subunit of ribosomal gene (LSU rDNA) was carried out using universal primers, and then, in the nested PCR reaction, primers specific for the fungi of the genera Glomus, Acaulospora, and Scutellospora were used. Colonization of strawberry roots by arbuscular mycorrhizal fungi was determined on the basis of the presence of DNA fragments of a size corresponding to the types of the fungi tested for. As a result of the analyses, the most reaction products characterizing AM fungi were found in the roots of plants treated with the preparation Florovit Eko. The least fragments characteristic of AM fungi were detected in the roots of plants fertilized with NPK, which confirms the negative impact of mineral fertilizers on the occurrence of mycorrhizal fungi in the roots of strawberry plants. The roots of plants fertilized with Tytanit differed from the control plants by the presence of one of the clusters of fungi of the genus Glomus and by the absence of a cluster of fungi of the genus Scutellospora. In the roots of plants treated with other biopreparations there were reaction products indicating the presence of fungi of the genera Glomus, Scutellospora and Acaulospora, like in the roots of the control plants. The results will be used to assess the suitability of microbiologically enriched biopreparations in horticultural production.


Author(s):  
Arpitha Shankar

AMF (Arbuscular Mychorhizal Fungi) are very well known due to their importance in promoting growth and developments of plants especially vegetables. These fungi can be grown easily, stored and multiplied with simple means, also the application of these fungi is generally on the layer of the soil or near the roots in the inner layers of the soils. The growth of the amf fungi is very easy and they are highly adjustable to any soil and environmental conditions. In this review our main focus is on the use of amf for production of vegetables and also the effect of amf against insects and pests. The amf is known to reduce several symptoms caused by different insect pests and also plant diseases thereby promoting healthy growth of the plants. Also use of this amf will increase the uptake of nutrient from the soils through symbiotic relationships between plants and fungi. The uptake of important minerals which are drawn from deeper layers of soils is observed with the help pf amf. This study reveals the benefits of the use of amf under severe disease and pest incidences thereby known as an alternate for harmful chemical pesticides and fungicides.


2018 ◽  
pp. 93-98
Author(s):  
G. Caruso ◽  
N. A. Golubkina ◽  
Т. M. Seredin ◽  
V. М. Sellitto

The fundamental direction of modern agriculture development is elaboration and utilization of technologies that ensure environmental safety, high plant productivity and quality of crop production. In this connection, the issues of optimization of mineral nutrition and water supply, immunity enhancement and protection of plants against various forms of biotic and abiotic stresses without significant environmental stress are of current interest. Normal growth and development of almost all plants on the Earth depends on the presence of mycorrhizal fungi in the soil, which ensure optimal plant nutrition and water supply due to the huge number of hyphae. The review discusses the prospects for the use of arbuscular mycorrhizal fungi in the cultivation of Allium species, as the most responsive plants to the effects of mycorrhizae due to the poorly developed root system that hinders the nutrition of plants. It is noted that utilization of arbuscular mycorrhizal fungi may provide the reduction of the amount of fertilizers, herbicides and insecticides needed for high productivity of crops. The review deals with the peculiarities of symbiotic interrelations of different species of mycorrhizal fungi (pure and mixed cultures, mainly of the genus Glomus) with different Allium species (onion, garlic, shallot, leek, A. roylei, A. fistulosum, A. galanthum). Questions of agricultural crops quality as affected by arbuscular mycorrhizal fungy are discussed. Data on the effect of climatic conditions on the efficiency of arbuscular mycorrhizal fungi utilization in Allium production are discussed. The possibility of increasing the efficiency of biofortification of Allium species with selenium via utilization of arbuscular-mycorrhizal fungi is noted, as well as an increase in the content of biologically active sulfur-containing compounds in garlic. Particular attention is paid to the necessity of the development of arbuscular mycorrhizal fungi preparations in Russia – the country not using this ecologically friendly technology at present.


2010 ◽  
Vol 47 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Antoine Affokpon ◽  
Danny L. Coyne ◽  
Louis Lawouin ◽  
Colette Tossou ◽  
Rufin Dossou Agbèdè ◽  
...  

2019 ◽  
Vol 46 (No. 4) ◽  
pp. 208-214
Author(s):  
Alena F. Lukács ◽  
Gábor M. Kovács

We aimed to test the hypothesis that treatment with an aboveground plant conditioner has an effect on important vegetable crops inoculated with arbuscular mycorrhizal fungi (AMF) and on their colonization by AMF. Potting experiments were set with pepper and tomato plants inoculated with commercial AMF inoculum and plants were treated with an aboveground plant conditioner. After harvesting, the dry weight of shoots and roots were measured, and the AMF colonization of the roots was quantified. We found a significant effect of the treatment on fungal colonization: the AMF colonization, the hyphal colonization rate and the frequency of the arbuscules in the roots of both vegetables were lower when aboveground plant conditioner was applied. Although the two species differed, no significant effect of the treatment on the growth of the plants was detected. Based on our findings we assumed that the lower AMF colonization more greatly influenced the growth of the pepper cultivar studied. We demonstrated that treatment with a commercial aboveground plant conditioner had an antagonistic effect on AMF colonization, which, in addition to many other effects, might influence the growth vegetable crops. The interaction of different practices applied simultaneously should be tested to effectively help the development suitable agriculture systems.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 804
Author(s):  
Nadezhda Golubkina ◽  
Leonardo D. Gomez ◽  
Helene Kekina ◽  
Eugenio Cozzolino ◽  
Rachael Simister ◽  
...  

The essentiality of selenium (Se) and iodine (I) for the human organism and the relationship between these two trace elements in mammal metabolism highlight the importance of the joint Se–I biofortification to vegetable crops in the frame of sustainable farming management. A research study was carried out in southern Italy to determine the effects of the combined inoculation with arbuscular mycorrhizal fungi (AMF) and biofortification with Se and I on plant growth, seed yield, quality, and antioxidant and elemental status, as well as residual biomass chemical composition of chickpea grown in two different planting times (14 January and 28 February). The AMF application improved the intensity of I and Se accumulation both in single and joint supply of these elements, resulting in higher seed yield and number as well as dry weight, and was also beneficial for increasing the content of antioxidants, protein, and macro- and microelements. Earlier planting time resulted in higher values of seed yield, as well as Se, I, N, P, Ca, protein, and antioxidant levels. Se and I showed a synergistic effect, stimulating the accumulation of each other in chickpea seeds. The AMF inoculation elicited a higher protein and cellulose synthesis, as well as glucose production in the residual biomass, compared to the single iodine application and the untreated control. From the present research, it can be inferred that the plant biostimulation through the soil inoculation with AMF and the biofortification with Se and I, applied singly or jointly, proved to be effective sustainable farming tools for improving the chickpea seed yield and/or quality, as well as the residual biomass chemical composition for energy production or beneficial metabolite extraction.


Sign in / Sign up

Export Citation Format

Share Document