scholarly journals Why Seed Physiology Is Important for Genebanking

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 584 ◽  
Author(s):  
Katherine J. Whitehouse ◽  
Fiona R. Hay ◽  
Charlotte Lusty

Genebank management is a field in its own right; it is multifaceted, requiring a diverse set of skills and knowledge. Seed physiology is one area that is critical to the successful operation of seed genebanks, requiring understanding of seed quality during development and maturation, seed dormancy and germination, and seed longevity in storage of the target species. Careful management of the workflow between these activities, as seeds move from harvest to storage, and the recording and management of all relevant associated data, is key to ensuring the effective conservation of plant genetic resources. This review will discuss various aspects of seed physiology that genebank managers should be aware of, to ensure appropriate decisions are made about the handling and management of their seed collections.

Author(s):  
Michael Way ◽  

The genetic diversity found in populations of crop wild relatives is an essential resource for future crop breeding, but populations are at risk of loss before germplasm has been fully conserved in genebanks. This chapter describes best practice for targeting and identifying species, and review knowledge about the variation in wild plant populations to guide the timing of collecting and approaches for genetic sampling. Indicators are presented for seed quality, ripeness and dispersal. Techniques for collection of seed, herbarium vouchers and associated data are reviewed with examples drawn from the Adapting Agriculture to Climate Change (Crop Wild Relative) project. Further research is needed to find optimal approaches for handling of seed to ensure high longevity of seed collections, and improved tools are needed to guide sampling of genetic diversity of crop wild relatives.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ines Van den houwe ◽  
Rachel Chase ◽  
Julie Sardos ◽  
Max Ruas ◽  
Els Kempenaers ◽  
...  

AbstractThe CGIAR genebank International Musa Germplasm Transit Centre (ITC) currently holds 1617 banana accessions from 38 countries as an in vitro collection, backed-up by a cryopreserved collection to safeguard global Musa diversity in perpetuity. The ITC also serves as a vital safety backup and transit centre for national banana genebanks and ensures that germplasm is clean of pests and diseases and freely available under the International Treaty on Plant Genetic Resources for Food and Agriculture. In more than 35 years of activity, the ITC has distributed over 18,000 banana accession samples to researchers and farmers in 113 countries. Ex situ conservation of vegetatively-propagated crops such as banana poses very particular challenges. Maintaining the ITC genebank is labor intense and costly. Efficiencies are sought through research and development of techniques on detecting viruses, the genetic integrity of accessions, and on innovative means of safeguarding banana diversity, such as conserving populations of wild species by seed banking. Although the conservation of global banana diversity is the main objective of the ITC, significant value comes from its holistic approach to better understand and promote its germplasm through numerous research activities and resources. Techniques for morphological and molecular characterization serve to identify and describe the collection, while also determining what gaps should be filled by collecting missions with national partners. The evaluation of desirable agronomic traits inherent in Musa spp. are investigated by a high-throughput phenotyping platform, which helps breeding programs to select cultivars resistant or tolerant to biotic and abiotic stresses. Genomic and bioinformatic studies of several banana wild relatives greatly enhance our understanding of Musa genetic diversity, links to important phenotypic traits and bring new methods for management of the collection. Collectively, these research activities produce enormous amounts of data that require curation and dissemination to the public. The two information systems at the ITC, Musa Genebank Management System and the Musa Germplasm Information System, serve to manage the genebank activities and to make public germplasm-related data for over 30 banana collections worldwide, respectively. By implementing the 10-year workplan set out in the Global Strategy for the Conservation and Use of Musa Genetic Resources, the network MusaNet supports Musa researchers and stakeholders, including the ITC, and most importantly, links to the world’s banana-producing countries via three regional banana networks.


2021 ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Toan Vu Dang ◽  
Tuong Vu Dang ◽  
Janet Paofa ◽  
...  

Background: Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were Musa acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16-20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples and 16 seed samples from one infructescence ('bunch') for each population. Results: Allelic richness of seeds compared to populations was 51%, 81% and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (>15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions: We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 12
Author(s):  
Franco Röckel ◽  
Toni Schreiber ◽  
Danuta Schüler ◽  
Ulrike Braun ◽  
Ina Krukenberg ◽  
...  

With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Dang Toan Vu ◽  
Tuong Dang Vu ◽  
Janet Paofa ◽  
...  

Abstract Background Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were M. acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16–20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples from different individuals and 16 seed samples from one infructescence (‘bunch’) were analysed for each population. Results Allelic richness of seeds compared to populations was 51, 81 and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (> 15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


Food Security ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 919-927 ◽  
Author(s):  
Douglas Gollin

Abstract New challenges have arrived for the conservation of plant genetic resources for food and agriculture. Increased pressure on the environment, including the added threat of climate change, has had adverse effects on biodiversity and agricultural systems. Emerging science and new technologies have at the same time altered the scope of possibilities for collection, conservation, and utilization of genetic resources for agriculture. Taken together, these changes imply a need for a refocusing of global strategies for the management of genetic resources for agriculture. This paper argues that simple theoretical models provide relatively little guidance for key questions about genebank management. The fundamental uncertainty of scientific possibility and global futures makes it challenging – and perhaps futile – to attempt economic valuation of gene banks. A more useful application of economic tools will be in the prioritization of collection and conservation. Economic analysis may also offer useful insights into the efficient management of genetic resources.


1964 ◽  
Vol 40 (1) ◽  
pp. 78-85 ◽  
Author(s):  
J. H. Cayford

Between September 1957 and August 1962 periodic red pine seed collections were made in a cut-over stand that originally supported a mixture of red and jack pine. A partially cut area and one-chain-wide clear-cut strips, from which all jack pine were cut, were sampled. During the five-year period, 5.5 and 11.2 pounds of seed per acre were dispersed on strip-cut and partial-cut areas, respectively. Maximum dispersal occurred during the autumn, except in 1959 when cool, rainy weather delayed seed dispersal. Seed quality varied directly with size of seed crop and with intensity of seed dispersal.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2369
Author(s):  
Ademola Emmanuel Adetunji ◽  
Tomi Lois Adetunji ◽  
Boby Varghese ◽  
Sershen ◽  
Norman W. Pammenter

The maintenance of seed quality during the long-term conservation of plant genetic resources is crucial for averting the projected food crises that are linked to the changing climate and rising world population. However, ageing-induced loss of seed vigour and viability during storage remains an inevitable process that compromises productivity in several orthodox-seeded crop species. Seed ageing under prolonged storage, which can occur even under optimal conditions, induces several modifications capable of causing loss of intrinsic physiological quality traits, including germination capacity and vigour, and stand establishment. The problems posed by seed ageing have motivated the development of various techniques for mitigating their detrimental effects. These invigoration techniques generally fall within one of two categories: (1) priming or pre-hydrating seeds in a solution for improved post-harvest performance, or (2) post-storage reinvigoration which often involves soaking seeds recovered from storage in a solution. Seed priming methods are generally divided into classical (hydropriming, osmopriming, redox priming, biostimulant priming, etc.) and advanced (nanopriming, magnetopriming and priming using other physical agents) techniques. With the increasing popularity of seed invigoration techniques to achieve the much-desired enhanced productivity and resilience in the face of a changing climate, there is an urgent need to explore these techniques effectively (in addition to other important practices such as plant breeding, fertilizer application, and the control of pests and diseases). This review aims to provide an overview of ageing in orthodox seeds and invigoration techniques that can enhance desirable agronomic and physiological characters.


2022 ◽  
pp. 1-8
Author(s):  
Richard H. Ellis

Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.


Radiocarbon ◽  
2002 ◽  
Vol 44 (1) ◽  
pp. 223-224 ◽  
Author(s):  
D Gallagher ◽  
E J McGee ◽  
P I Mitchell

The management of counting files, the calculation of radiocarbon age, and the creation and maintenance of databases for storage and retrieval of laboratory data are time-consuming and exacting tasks. These routine functions are essential to the successful operation of all 14C dating laboratories. However, since the number of 14C dating laboratories worldwide is rather limited, it is unlikely that a commercial software company will produce a program for use in 14C age calculation and associated data management. We have therefore developed Windows based software to meet some of these needs.


Sign in / Sign up

Export Citation Format

Share Document