scholarly journals Preparation and Characterization of Esterified Bamboo Flour by an in Situ Solid Phase Method

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 920 ◽  
Author(s):  
Yaqi Geng ◽  
Xiaohan Pei ◽  
Xiaoyu He ◽  
Ping Li ◽  
Yiqiang Wu ◽  
...  

Bamboo plastic composites have become a hot research topic and a key focus of research. However, many strong, polar, hydrophilic hydroxyl groups in bamboo flour (BF) results in poor interfacial compatibility between BF and hydrophobic polymers. Maleic anhydride-esterified (MAH-e-BF) and lactic acid-esterified bamboo flour (LA-e-BF) were prepared while using an in situ solid-phase esterification method with BF as the raw material and maleic anhydride or lactic acid as the esterifying agent. Fourier transform infrared spectroscopy results confirmed that BF esterification with maleic anhydride and lactic acid was successful, with the esterification degrees of MAH-e-BF and LA-e-BF at 21.04 ± 0.23% and 14.28 ± 0.17%, respectively. Esterified BF was characterized by scanning electron microscopy, contact angle testing, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that esterified BF surfaces were covered with graft polymer and the surface roughness and bonding degree of MAH-e-BF clearly larger than those of LA-e-BF. The hydrophobicity of esterified BF was significantly higher than BF and the hydrophobicity of MAH-e-BF was better than LA-e-BF. The crystalline structure of esterified BF showed some damage, while MAH-e-BF exhibited a greater decrease in crystallinity than LA-e-BF. Overall, the esterification reaction improved BF thermoplasticity, with the thermoplasticity of MAH-e-BF appearing to be better than LA-e-BF.

Author(s):  
Yaqi Geng ◽  
Xiaohan Pei ◽  
Xiaoyu He ◽  
Ping Li ◽  
Yiqiang Wu ◽  
...  

Bamboo plastic composites have become a hot research topic and a key focus of research. However, the many strong, polar, hydrophilic hydroxyl groups in bamboo flour (BF) results in poor interfacial compatibility between BF and hydrophobic polymers. Maleic anhydride-esterified (MAH-e-BF) and lactic acid-esterified bamboo flour (LA-e-BF) were prepared using an in situ solid-phase esterification method with BF as the raw material and maleic anhydride or lactic acid as the esterifying agent. Fourier transform infrared spectroscopy results confirmed that BF esterification with maleic anhydride and lactic acid was successful, with the esterification degrees of MAH-e-BF and LA-e-BF at 21.04 and 14.36%%, respectively. Esterified BF was characterized by scanning electron microscopy, contact angle testing, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that esterified BF surfaces were covered with graft polymer and the surface roughness and bonding degree of MAH-e-BF clearly larger than those of LA-e-BF. The hydrophobicity of esterified BF was significantly higher than BF and the hydrophobicity of MAH-e-BF better than LA-e-BF. The crystalline structure of esterified BF showed some damage, with MAH-e-BF exhibiting a greater decrease in crystallinity than LA-e-BF. Overall, the esterification reaction improved BF thermoplasticity, with the thermoplasticity of MAH-e-BF appearing better than LA-e-BF.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


1986 ◽  
Vol 43 (2) ◽  
pp. 183-194 ◽  
Author(s):  
R. J. Dewhurst ◽  
A. J. F. Webster ◽  
F. W. Wainman ◽  
P. J. S. Dewey

ABSTRACTA model has been developed to predict the true metabolizable energy (ME,) concentration in forages given to ruminants.The chemical description of forages is based on the concentrations of ash, crude protein, ether extract, sugars and α-glycans, β-glycans and lignin, volatile fatty acids and lactic acid. The model assumes complete fermentation of sugars, α-glycans and lactic acid. The extent of fermentation of β-glycans and crude protein is determined in part by rumen solid-phase outflow rate, which can itself be predicted from dry-matter intake.The model was tested using 121 graminaceous forages whose chemical composition and concentration of metabolizable energy had been measured in the Feedingstuffs Evaluation Unit at the Rowett Research Institute. The agreement between observed and predicted ME, for all classes of forage was nearly always as good as, or better than, the best prediction from single attributes of food chemistry which could only be determined retrospectively and were not consistent even within classes of forage. The model predicts a decline in ME, with increasing rumen solid-phase outflow rate which is determined mainly by the extent of fermentation of β-glycans.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 843 ◽  
Author(s):  
Zhiyong Yu ◽  
Jishen Hao ◽  
Wenji Li ◽  
Hanxing Liu

Co-doped Li2MoO3 was successfully synthesized via a solid phase method. The impacts of Co-doping on Li2MoO3 have been analyzed by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) measurements. The results show that an appropriate amount of Co ions can be introduced into the Li2MoO3 lattices, and they can reduce the particle sizes of the cathode materials. Electrochemical tests reveal that Co-doping can significantly improve the electrochemical performances of the Li2MoO3 materials. Li2Mo0.90Co0.10O3 presents a first-discharge capacity of 220 mAh·g−1, with a capacity retention of 63.6% after 50 cycles at 5 mA·g−1, which is much better than the pristine samples (181 mAh·g−1, 47.5%). The enhanced electrochemical performances could be due to the enhancement of the structural stability, and the reduction in impedance, due to the Co-doping.


2012 ◽  
Vol 550-553 ◽  
pp. 747-751
Author(s):  
Ling Luo ◽  
Xing Wang ◽  
Yun Liu ◽  
Zi Li Yu

The graft copolymerization of maleic anhydride (MAH) onto ground rubber tire (GRT) was investigated through solvothermal synthesis route using free radical initiator. The effects of solvents, initiators and their concentration, and GRT mesh size on the grafting yield (GY) were studied, and the optimal conditions were concluded. The results showed that the high GY was obtained by using toluene as solvent, 1% azobisisobutyronitrile as initiator, and GRT fine powder as raw material. Infrared spectra and X-ray photoelectron spectra confirmed that MAH was successfully grafted onto the GRT molecules. The thermogravimetric analysis revealed that the thermal stability of graft GRT (GRT-g-MAH) is better than that of GRT slightly. The blending experimental results suggest that the GRT-g-MAH can be used as a compatilizer for GRT/HDPE blends.


Author(s):  
Ferymon Mahulette ◽  
Tri Santi Kurnia

Bakasang laor is one of the traditional fermented fishery products in Maluku, Indonesia. There are two types of  bakasang laor, i.e. with and without vinegar. The microbiological research of bakasang processed use laor as raw material  has never been done before. The research aimed to analyze the microbiological quality and proximate composition of two types of bakasang laor.  The proximate composition can determine the nutritional value of  this product for consumption by the community. The sample of bakasang laor was taken from traditional producer in Latuhalat village, Ambon. The total number of halotolerant and coliform bacteria  in bakasang laor without vinegar were 1.7x106 CFU/g and 4.1x106 CFU/g, respectively, while the total of lactic acid bacteria in bakasang laor with vinegar was 6.0x106 CFU/g.  The carbohydrate, protein, fat and ash contents of bakasang laor with vinegar was higher than bakasang laor without vinegar. The carbohydrate, protein and fat contents of bakasang laor with vinegar were 19.64 %, 16.23 %, and 2.42 %, respectively. Generally, microbiological quality and proximate composition  of  bakasang laor with vinegar was better than bakasang laor without  vinegar. The bacteria that play a role in fermentation can be used as a starter in the fermentation of various food products.  The results of this research to improve the quality of this fermentation product in the future.


2016 ◽  
Vol 256 ◽  
pp. 63-68
Author(s):  
Davi Munhoz Benati ◽  
Kazuhiro Ito ◽  
Kazuyuki Kohama ◽  
Hajime Yamamoto ◽  
Eugênio José Zoqui

Fe-2.5C-1.5Si gray cast iron evaluated in previous works exhibited promising potential as semisolid raw material presenting low levels of maximum stress and viscosity, similar to Al-Si alloys. This work is intended to investigate phase transformations and liquid phase formation for the Fe-2.5C-1.5Si gray cast iron in order to understand the performance of the alloy during the semisolid processing. Thus in situ heating experiments via high temperature laser scanning confocal microscopy were performed to analyze the solid-to-liquid transition. At room temperature alloy presented a matrix of pearlite and ferrite with type D flake graphite. During the heating process the main transformations observed were graphite precipitation on the austenite grain boundaries, graphite precipitates and flakes graphite growing and coarsening with the increasing of temperature and the beginning of melt around 1140°C. Coarsened flakes at high temperatures resulted in a liquid continuous network after melting, thereby the liquid phase was formed surrounding and wetting homogeneously the solid phase. This favors the detachment of grains from each other and leads to the intended solid globules immersed in liquid.


2010 ◽  
Vol 34-35 ◽  
pp. 1780-1783 ◽  
Author(s):  
Yuan Chun Liu ◽  
Zheng Guang Zou ◽  
Fei Long

It has been demonstrated that V6O13 is a very attractive cathode materials for rechargeable lithium-ion batteries. Cr3+ was doped to improve its electrochemical property. CrxV6O13(x =0.01~0.05) cathode materials were prepared using NH4VO3 and Cr2O3 as raw material by solid phase method in argon atmosphere. The best electrochemical properties of CrxV6O13 were obtained under the optimum conditions as follows: the argon flow rate is 85mL/min, the heating rate is 5°C /min, the holding time 1h at 180°C, 1h at 300°C and 30 min at 450°C. The structural and electrochemical properties were examined by means of X-ray diffraction, SEM and charge–discharge tests. The results demonstrated that the powders maintain double cavity chain structure regardless of the chromium doping. When the Cr doping of x = 0.03, capacity is highest. Maximum initial discharge capacity is 334mA•h/g, 80% of theoretical capacity. During discharge process there is 6.5 Li+ embedded in the Molecules of doping. After discharge cathode became Li6.5Cr0.03V6O13.


Sign in / Sign up

Export Citation Format

Share Document