scholarly journals Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs)

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1073 ◽  
Author(s):  
Anna Lis-Bartos ◽  
Agnieszka Smieszek ◽  
Kinga Frańczyk ◽  
Krzysztof Marycz

Thermoplastic polyurethane (TPU) and poly(lactic acid) are types of biocompatible and degradable synthetic polymers required for biomedical applications. Physically blended (TPU+PLA) tissue engineering matrices were produced via solvent casting technique. The following types of polymer blend were prepared: (TPU+PLA) 7:3, (TPU+PLA) 6:4, (TPU+PLA) 4:6, and (TPU+PLA) 3:7. Various methods were employed to characterize the properties of these polymers: surface properties such as morphology (scanning electron microscopy), wettability (goniometry), and roughness (profilometric analysis). Analyses of hydrophilic and hydrophobic properties, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) of the obtained polymer blends were conducted. Tensile tests demonstrated that the blends exhibited a wide range of mechanical properties. Cytotoxicity of polymers was tested using human multipotent stromal cells derived from adipose tissue (hASC). In vitro assays revealed that (TPU+PLA) 3:7 matrices were the most cytocompatible biomaterials. Cells cultured on (TPU+PLA) 3:7 had proper morphology, growth pattern, and were distinguished by increased proliferative and metabolic activity. Additionally, it appeared that (TPU+PLA) 3:7 biomaterials showed antiapoptotic properties. hASC cultured on these matrices had reduced expression of Bax-α and increased expression of Bcl-2. This study demonstrated the feasibility of producing a biocompatible scaffold form based on (TPU+PLA) blends that have potential to be applied in tissue engineering.

2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2014 ◽  
Vol 68 (2) ◽  
Author(s):  
Guo-Quan Zhu ◽  
Fa-Gang Wang ◽  
Hong-Sheng Tan ◽  
Qiao-Chun Gao ◽  
Yu-Ying Liu

AbstractA number of poly(lactic acid-co-glycolic acid)/polyurethane (PLGA/PU) blend films with various PU mole contents were prepared by casting the polymer blend solution in chloroform. The surface morphologies of the PLGA/PU blend films were studied by scanning electron microscopy (SEM). The thermal, mechanical and chemical properties of the PLGA/PU blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests and surface contact angle tests. The results revealed that the introduction of PU could markedly modify the properties of PLGA films.


2017 ◽  
Vol 737 ◽  
pp. 256-261 ◽  
Author(s):  
Martin Boruvka ◽  
Luboš Bĕhálek

Cellulose is almost inexhaustible source of raw material comprising at least one-third of all biomass matter. Through deconstruction of cellulose hierarchical structure can be extracted highly crystalline cellulose nanocrystals (CNC) with impressive properties. However, the main barrier in the processing of the nanocomposites based on CNC is their inhomogeneous dispersion and distribution in the non-polar polymer matrix. In this paper is this problem addressed by use of novel hydrophobic lignin coated CNC as a biobased nucleation agents in poly (lactic acid) (PLA) nanocomposites. These green nanocomposites based on natural plant derived substances have enormous potential to replace materials originated from non-renewable resources and show promise of providing degradation back into the environment when they are no longer needed. Resulted composites prepared by twin screw extrusion and injection moulding were characterized by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The addition of L-CNC (1, 2 and 3 wt. %) into PLA increased melt crystallization enthalpy and decreases the cold crystallization enthalpy. The degree of crystallinity (cc) increased from 5.6 % (virgin PLA) to 8.5 % (PLA/1-L-CNC), 10.3 % (PLA/2-L-CNC) and 10.7 % (PLA/3-L-CNC). The wide range of degradation temperatures of lignin coating has been observed starting at 100 °C.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1013 ◽  
Author(s):  
Xuan Wang ◽  
Yuan Jia ◽  
Zhen Liu ◽  
Jiaojiao Miao

Poly(lactic acid) (PLA)/lignin-containing cellulose nanofibrils (L-CNFs) composite films with different lignin contents were produced bythe solution casting method. The effect of the lignin content on the mechanical, thermal, and crystallinity properties, and PLA/LCNFs interfacial adhesion wereinvestigated by tensile tests, thermogravimetric analysis, differential scanning calorimetry (DSC), dynamic mechanical analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The tensile strength and modulus of the PLA/9-LCNFs (9 wt % lignin LCNFs) composites are 37% and 61% higher than those of pure PLA, respectively. The glass transition temperature (Tg) decreases from 61.2 for pure PLA to 52.6 °C for the PLA/14-LCNFs (14 wt % lignin LCNFs) composite, and the composites have higher thermal stability below 380 °C than pure PLA. The DSC results indicate that the LCNFs, containing different lignin contents, act as a nucleating agent to increase the degree of crystallinity of PLA. The effect of the LCNFs lignin content on the PLA/LCNFs compatibility/adhesion was confirmed by the FTIR, SEM, and Tg results. Increasing the LCNFs lignin content increases the storage modulus of the PLA/LCNFs composites to a maximum for the PLA/9-LCNFs composite. This study shows that the lignin content has a considerable effect on the strength and flexibility of PLA/LCNFs composites.


2021 ◽  
Vol 30 ◽  
pp. 096368972110210
Author(s):  
Martina Culenova ◽  
Ivana Birova ◽  
Pavol Alexy ◽  
Paulina Galfyova ◽  
Andreas Nicodemou ◽  
...  

Complex in vitro characterization of a blended material based on Poly(Lactic Acid), Poly(Hydroxybutyrate), and Thermoplastic Starch (PLA/PHB/TPS) was performed in order to evaluate its potential for application in the field of tissue engineering. We focused on the biological behavior of the material as well as its mechanical and morphological properties. We also focused on the potential of the blend to be processed by the 3D printer which would allow the fabrication of the custom-made scaffold. Several blends recipes were prepared and characterized. This material was then studied in the context of scaffold fabrication. Scaffold porosity, wettability, and cell-scaffold interaction were evaluated as well. MTT test and the direct contact cytotoxicity test were applied in order to evaluate the toxic potential of the blended material. Biocompatibility studies were performed on the human chondrocytes. According to our results, we assume that material had no toxic effect on the cell culture and therefore could be considered as biocompatible. Moreover, PLA/PHB/TPS blend is applicable for 3D printing. Printed scaffolds had highly porous morphology and were able to absorb water as well. In addition, cells could adhere and proliferate on the scaffold surface. We conclude that this blend has potential for scaffold engineering.


Author(s):  
Chu-Jung Su ◽  
Ming-Gene Tu ◽  
Li-Ju Wei ◽  
Tuan-Ti Hsu ◽  
Chia-Tze Kao ◽  
...  

Electrospinning is the versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. Natural bone is a hierarchically composites with the dispersion of inorganic ceramic along organic polymer. The aim of this study, the electrospun poly (lactic acid) (PLA) mats coated with chitosan (CH) and calcium silicate (CS) powder were fabricated. The morphology, chemical composition, and surface properties of CS/CH-PLA composites were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. In vitro, the CS/CH-coated PLA mats increased the formation of apatite on the surface when soaking in cell cultured medium. During culture, the adhesion and proliferation of the human mesenchymal stem cells (hMSCs) cultured on CS/CH-PLA were significantly promoted relative to those on PLA. Collagen I and fibronectin levels and promoted cell adhesion were observed upon an increase in CS content. Further, compared to PLA mats without CS/CH, CS10 and CS15 mats markedly enhanced the proliferation of hMSCs as well as their osteogenesis properties, which was characterized by bone-related gene expression. Our results demonstrated that the biodegradable and electroactive CS/CH-PLA mats had potential application as an ideal candidate for bone tissue engineering. Together, findings from this study clearly demonstrated that PLLA-C2S composite scaffold may function as an ideal candidate for bone tissue engineering.


2018 ◽  
Vol 119 ◽  
pp. 945-953 ◽  
Author(s):  
Francesco Carfì Pavia ◽  
Gioacchino Conoscenti ◽  
Silvia Greco ◽  
Vincenzo La Carrubba ◽  
Giulio Ghersi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3087
Author(s):  
Asmak Abdul Samat ◽  
Zuratul Ain Abdul Hamid ◽  
Mariatti Jaafar ◽  
Badrul Hisham Yahaya

Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document