scholarly journals Changes on the Structural and Physicochemical Properties of Conjugates Prepared by the Maillard Reaction of Black Bean Protein Isolates and Glucose with Ultrasound Pretreatment

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 848 ◽  
Author(s):  
Hua Jin ◽  
Qingshan Zhao ◽  
Haiying Feng ◽  
Yuxin Wang ◽  
Jubing Wang ◽  
...  

The conjugates of black bean protein isolate (BBPI) and glucose (G) were prepared via the wet heating Maillard reaction with ultrasound pretreatment. The physicochemical properties of UBBPI-G conjugates prepared by ultrasound pretreatment Maillard reaction had been compared with classical Maillard reaction (BBPI-G). The reaction rate between BBPI and glucose was speeded up by ultrasound pretreatment. A degree of glycation (DG) of 20.49 was achieved by 2 h treatment for UBBPI-G, whereas 5 h was required using the classical heating. SDS-PAGE patterns revealed that the BBPI-G conjugates with higher molecular weight were formed after glycosylation. The results of secondary structure analysis suggested that the α-helix and β-sheet content of UBBPI-G were lower than that of BBPI-G. In addition, UBBPI-G conjugates had exhibited bathochromic shift compared with BBPI by fluorescence spectroscopy analysis. Finally, UBBPI-G achieved higher level of surface hydrophobicity, solubility, emulsification property and antioxidant activity than BBPI and BBPI-G (classical Maillard reaction).

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1688 ◽  
Author(s):  
Feng ◽  
Jin ◽  
Gao ◽  
Zhu ◽  
Zhao ◽  
...  

The effect of (−)-epigallocatechin-3-gallate (EGCG) on protein structure and emulsion properties of glycosylated black bean protein isolate (BBPI-G) were studied and compared to native black bean protein isolate (BBPI). The binding affinity of BBPI and BBPI-G with EGCG belonged to non-covalent interaction, which was determined by fluorescence quenching. EGCG attachment caused more disordered protein conformation, leading to a higher emulsification property. Among the different EGCG concentrations (0.10, 0.25, 0.50 mg/mL), the result revealed that the highest level of the emulsification property was obtained with 0.25 mg/mL EGCG. Therefore, the BBPI-EGCG and BBPI-G-EGCG prepared by 0.25 mg/mL EGCG were selected to fabricate oil-in-water (O/W) emulsions. After the addition of EGCG, the mean particle size of emulsions decreased with the increasing absolute value of zeta-potential, and more compact interfacial film was formed due to the higher percentage of interfacial protein adsorption (AP%). Meanwhile, EGCG also significantly reduced the lipid oxidation of emulsions.


2018 ◽  
Vol 49 (5) ◽  
pp. 548-555 ◽  
Author(s):  
Xiu-Ying Xu ◽  
Yong Cao ◽  
Hao Zhang ◽  
Sanabil Yaqoob ◽  
Ming-Zhu Zheng ◽  
...  

2020 ◽  
Vol 55 (10) ◽  
pp. 3315-3326 ◽  
Author(s):  
Chengbin Zhao ◽  
Huanhuan Yin ◽  
Jiannan Yan ◽  
Baokun Qi ◽  
Jingsheng Liu

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1244
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Regine Stockmann ◽  
Hema Jegasothy ◽  
Roman Buckow

The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5–8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5–6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7–8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.


Sign in / Sign up

Export Citation Format

Share Document