scholarly journals Amylase-Sensitive Polymeric Nanoparticles Based on Dextran Sulfate and Doxorubicin with Anticoagulant Activity

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 921
Author(s):  
Nikolay A. Pyataev ◽  
Pavel S. Petrov ◽  
Olga V. Minaeva ◽  
Mikhail N. Zharkov ◽  
Oleg A. Kulikov ◽  
...  

This study looked into the synthesis and study of Dextrane Sulfate–Doxorubicin Nanoparticles (DS–Dox NP) that are sensitive to amylase and show anticoagulant properties. The particles were obtained by the method of solvent replacement. They had a size of 305 ± 58 nm, with a mass ratio of DS:Dox = 3.3:1. On heating to 37 °C, the release of Dox from the particles was equal to 24.2% of the drug contained. In the presence of amylase, this ratio had increased to 42.1%. The study of the biological activity of the particles included an assessment of the cytotoxicity and the effect on hemostasis and antitumor activity. In a study of cytotoxicity on the L929 cell culture, it was found that the synthesized particles had less toxicity, compared to free doxorubicin. However, in the presence of amylase, their cytotoxicity was higher than the traditional forms of the drug. In a study of the effect of DS–Dox NP on hemostasis, it was found that the particles had a heparin-like anticoagulant effect. Antitumor activity was studied on the model of ascitic Zaidel hepatoma in rats. The frequency of complete cure in animals treated with the DS–Dox nanoparticles was higher, compared to animals receiving the traditional form of the drug.

2019 ◽  
Vol 70 (4) ◽  
pp. 1157-1161 ◽  
Author(s):  
Rodica Tatia ◽  
Christina Zalaru ◽  
Isabela Tarcomnicu ◽  
Lucia Moldovan ◽  
Oana Craciunescu ◽  
...  

Hederagenin, a saponin known for its therapeutic effect was isolated from leaves of Hedera helix. Hederagenin was obtained by repeated maceration of ground plant material in 95% (v/v) ethanol. The ethanolic extract was subjected to acid hydrolysis and purification with acetonitrile. Isolated hederagenin (IHe) was analyzed by HPLC-MS/MS and compared to standard hederagenin. In vitro cytotoxicity of IHe was tested in a culture of fibroblast cells from NCTC clone L929 cell line by MTT assay, using dioscin as positive control. For the determination of IHe antitumor effect, in vitro tests were performed in a culture of human cervix carcinoma Hep-2 cells cultivated in the presence of different concentrations of sample for 48 h. IHe was biocompatible in the range of concentrations 2-200 mg/mL, in NCTC cell culture. The compound showed cell cytotoxicity in the concentration range of 100-400 mg/mL, in Hep-2 cell culture, revealing its antitumor activity. These results demonstrated the possible use of hederagenin isolated from H. helix extract as an antitumor agent.


1967 ◽  
Vol 17 (01/02) ◽  
pp. 277-286 ◽  
Author(s):  
Maria Gumińska ◽  
M Eckstein ◽  
Barbara Stachurska ◽  
J Sulko

SummaryThe anticoagulant activity of 3.3’-(benzylidene)-bis-4-hydroxycoumarin derivatives has been estimated by one step Quick’s method. The derivatives contained the following groups in the para position of benzylidene residue: NCS- (I), CH3-S- (II), CH3-SO-(III), CH3-S02- (IV), C2H5-S- (V), C2H5-SO- (VI), C2H5-S02- (VII). All these compounds were much more active than 3.3’-(benzylidene)-bis-4-hydroxycoumarin itself.Compounds possessing the ethyl chain at the sulphur atom (V, VI, VII) were more active than methyl homologues (II, III, IV). Comparison of the activity of the series of thio-, sulphoxy-, and sulphonyl-derivatives showed that among methyl- and ethyl-derivatives those with the sulphoxy grouping (III, VI) displayed the greatest anticoagulant activity. The action of sulphonyl (IV, VII) and thio-derivatives (II, V) was weaker and shortest. The derivative with the NCS-group (I) possessed a relatively the lowest activity among the investigated compounds. 3.3’-(p-Ethylsulphoxybenzyl-idene)-bis-4-hydroxycoumarin (VI), with distinct biological activity reached about ½ of dicoumarol activity.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 5282-5296 ◽  
Author(s):  
Marija S. Jeremić ◽  
Hubert Wadepohl ◽  
Vesna V. Kojić ◽  
Dimitar S. Jakimov ◽  
Ratomir Jelić ◽  
...  

Two new Rh(iii)–ed3a complexes [Rh(ed3a)(OH2)]·H2O and Na[Rh(ed3a)Cl]·H2O have shown good antitumor activity, especially against HeLa cell line.


2018 ◽  
Vol 45 (2) ◽  
pp. 155-159 ◽  
Author(s):  
I. A. Ratnikova ◽  
N. N. Gavrilova ◽  
K. Bayakyshova ◽  
Z. Zh. Turlybaeva ◽  
L. A. Kosheleva ◽  
...  

1988 ◽  
Vol 255 (4) ◽  
pp. F781-F786 ◽  
Author(s):  
S. Adler

The effect of several glycosaminoglycans and sulfated polysaccharides on the growth of cultured rat glomerular visceral epithelial cells (GEC) was studied in vitro. Heparin, one preparation of heparan sulfate proteoglycan, dextran sulfate, and pentosan polysulfate significantly inhibited the growth of several GEC clones studied (36.0-77.1% inhibition at 100 micrograms/ml). Other glycosaminoglycans studied did not affect GEC growth. Growth inhibition by heparin was dose related and did not appear to reflect cytotoxicity. Heparins with high or low affinity for antithrombin inhibited growth to similar degrees. When heparin was fractionated into high- and low-anticoagulant activity fractions by physicochemical means the high activity fraction displayed significantly greater growth inhibition. The degree of growth inhibition significantly correlated with serum concentration in the media (r = 0.64; P less than 0.001). Removal of heparin binding factors from serum resulted in a loss of this correlation as well as less overall growth inhibition. These experiments suggest that interactions of GEC with heparan sulfates and other heparin-like molecules in the extracellular matrix may be important in the control of GEC growth.


Sign in / Sign up

Export Citation Format

Share Document