scholarly journals Friction and Wear Behavior of Polyimide Composites Reinforced by Surface-Modified Poly-p-Phenylenebenzobisoxazole (PBO) Fibers in High Ambient Temperatures

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.

2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


2010 ◽  
Vol 150-151 ◽  
pp. 1106-1109 ◽  
Author(s):  
Yong Kun Wang ◽  
Li Chen ◽  
Zhi Wei Xu

The glass fiber (GF) reinforced epoxy (EP) composites filled by nano-Al2O3, nano-TiO2, nano-SiO2 and multi-walled carbon nanotubes (MWCNTs) were prepared. The friction and wear behavior of composites under dry condition were evaluated with block-on-ring friction and wear tester. The morphologies of the worn surfaces of the composites were analyzed by scanning electric microscopy (SEM). The results show that 0.5 wt% MWCNTs and nano-TiO2 can significantly lower the friction coefficient and specific wear rate of composites, respectively, while 0.5 wt% nano-SiO2 and nano-Al2O3 can slightly lower the friction coefficient and specific wear rate of the composites.


2021 ◽  
Vol 1016 ◽  
pp. 1121-1126
Author(s):  
Zhong Zheng Pei ◽  
Ren Bo Song ◽  
Jie Xu ◽  
Yi Fan Feng ◽  
Ke Guo

The dependence of friction and wear behavior on nanosodium titanate whisker and aramid pulp in a designed resin-based brake material was systematically analyzed. Higher contents of aramid pulp enhanced the hardness of the brake materials. In addition, the maximum impact energy of the material reached 0.392 J/cm2 where the ratio of aramid pulp to sodium titanate whisker is 0.75. At same time, the friction coefficient was stable between 0.38 and 0.45, and the wear rate was 5%. The samples with higher contents of nanosodium titanate whiskers and aramid pulp showed more uniform furrows, fewer delaminated craters, more moderate layers transfer and more stable contact plateaus.


Author(s):  
Gao Wen ◽  
Chongsheng Long ◽  
Tang Rui ◽  
Jiping Wang

Carbon fiber reinforced carbon-silicon carbide composites (C/C-SiC) were prepared by chemical volume infiltration (CVI) method and reaction melt infiltration (RMI) technique of silicon liquid to carbon reinforce carbon matrix composites. The friction and wear behaviors of C/C-SiC composites at various loads and sliding speeds were investigated by MRH-3 block-on-ring tribometer at room temperature under water lubricating conditions. Furthermore, the morphologies, phase of the worn surface and the debris were observed, examined and analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) respectively. Experimental results showed that the C/C-SiC composites had a better wear resistence, and the friction coefficient under water lubricated conditions is about 0.02–0.06. The influence of sliding speed on the friction coefficients and the specific wear rate of C/C-SiC is more obvious than that of normal load when the load is less than 200N (inclueded200N). The friction coefficient and the specific wear rate of C/C-SiC decreased as the sliding velocity increased. At the sliding speed higher than 2m/s, the friction coefficient is less than 0.02. The specific wear rates is at a low level about (2×10−7mm3/Nm–5×10−8mm3/Nm).


2019 ◽  
Vol 26 (10) ◽  
pp. 1950074
Author(s):  
ZHI-YUAN ZHU ◽  
JIA-HUAN CHEN ◽  
YUAN-FEI CAI ◽  
JIAN-QIANG LI

This study explored the friction and wear behavior of a Ni-based exhaust valve at high temperatures. Nickel-based superalloy was used with two types of processing states: the original forged sample and the sample under the standard T1 heat treatment. At room temperature and a loading force of 10[Formula: see text]N, the average friction coefficient of the T1 heat-treated specimen is 0.61, which was lower than that of the forged sample (0.78). The wear rate of this specimen was also lower than that of the forged sample at the same temperature and loading force. Thus, T1 heat treatment can significantly improve the wear resistance of the alloy because of [Formula: see text] phase and carbides. The wear rate was the minimum at 550∘C and increased again at 750∘C dominated by the formation and flake-off of the oxide film.


2008 ◽  
Vol 368-372 ◽  
pp. 1307-1309 ◽  
Author(s):  
Li Yun Zheng ◽  
Li Xin Zhao ◽  
Jing Jun Zhang

Ti(C,N)-based cermets were coated with a TiN/TiAlN coating using ion plating technology. The sliding wear test was performed for the coated cermets and the microstructure, composition and surface roughness of the coated cermets under different velocities and loads were characterized. The results showed that the friction coefficients of the coated cermets were lower than that of the neat cermets. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with increasing sliding speed. Under the same sliding velocity, the average friction coefficient of the coated cermets was lower under higher load. The wear mechanisms were mainly adhesive wear and abrasive wear.


Author(s):  
Aravind Dhandapani ◽  
Senthilkumar Krishnasamy ◽  
Thitinun Ungtrakul ◽  
Senthil Muthu Kumar Thiagamani ◽  
Rajini Nagarajan ◽  
...  

Tribology, which may be defined as an interdisciplinary subject, deals with relative motion between two or more bodies, i.e., surfaces that are interacting relatively. Thus, tribology is a science covering three vital classes, namely, 1) wear, 2) friction, and 3) lubrication. The focus of this article is to bring out the elements that are influencing the wear-resisting behavior of thermosetting and thermoplastic composites with natural-based constituents. It was also identified from the literature sources that 1) the treatments on the natural fibers acting as reinforcement and 2) the addition of fillers in resin acting as matrix could improve the wear-resisting behavior of the composites. Additionally, other conditions such as 1) sliding speed, 2) sliding velocity, 3) sliding distance, and 4) operating temperature could also influence the friction coefficient and specific wear rate of the natural-based composites.


2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


2021 ◽  
Vol 1016 ◽  
pp. 1235-1239
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid S. Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The properties of anodized aluminum, and wear resistance in particular, are of high interest for the scientific community. In this study, discs of AA6082 were subjected to a peculiar hard anodizing process leading to anodized samples having different thicknesses. In order to investigate the wear mechanism of samples, unidirectional tribological tests were performed against alumina balls (corundum) under different loading conditions. Surface and microstructure of all the samples were characterized before and after the tribological tests, using different characterization techniques. The tribological tests showed remarkable differences in the friction coefficient and wear behavior of the anodized AA6082 samples, related to the microstructure modifications and to the specific applied sliding conditions.


Sign in / Sign up

Export Citation Format

Share Document