Effect of Nano Sodium Titanate Whisker and Aramid Pulp on the Friction and Wear Behavior of Resin-Based Brake Material

2021 ◽  
Vol 1016 ◽  
pp. 1121-1126
Author(s):  
Zhong Zheng Pei ◽  
Ren Bo Song ◽  
Jie Xu ◽  
Yi Fan Feng ◽  
Ke Guo

The dependence of friction and wear behavior on nanosodium titanate whisker and aramid pulp in a designed resin-based brake material was systematically analyzed. Higher contents of aramid pulp enhanced the hardness of the brake materials. In addition, the maximum impact energy of the material reached 0.392 J/cm2 where the ratio of aramid pulp to sodium titanate whisker is 0.75. At same time, the friction coefficient was stable between 0.38 and 0.45, and the wear rate was 5%. The samples with higher contents of nanosodium titanate whiskers and aramid pulp showed more uniform furrows, fewer delaminated craters, more moderate layers transfer and more stable contact plateaus.

2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.


1972 ◽  
Vol 94 (1) ◽  
pp. 12-18 ◽  
Author(s):  
M. T. Lavik ◽  
B. D. McConnell ◽  
G. David Moore

Results are presented for the bonding of thin, sintered, fluoride films of BaF2 and CaF2 with mono-aluminum phosphate. Friction and wear behavior of these films has been defined in terms of film compositional changes, film curing procedures, and substrate variations when subjected to varying levels of temperature and load. Mono-aluminum phosphate was found to greatly enhance the adhesion of the sintered fluoride film. There was a strong dependence of wear life at 1000 deg F on the mono-aluminum phosphate content of the film. Films containing 6 vol. percent phosphate appear to be near optimum and exhibited wear lives of 1,000,000 load cycles under sliding conditions in a dual rub-shoe device with friction coefficient levels in the order of 0.10 to 0.20. Near-optimum values were determined for cure temperature (950 deg C), and surface finish (23 μ in. rms) on rhodium-plated substrates. Graphite and gold were added to the aluminum phosphate bonded BaF2: CaF2 films. Both additives were found to lower the friction coefficient at room temperature.


Author(s):  
LiQin Wang ◽  
JianWei Sun ◽  
Le Gu

The tribological performance of Polyetherimide (PEI) composites filled with different Polytetrafluoroethylene (PTFE) content was comparatively evaluated on MM-200 test rig in block-on-ring configuration under dry friction condition. The microstructures of worn surfaces, fractured surfaces and wear mechanisms of the PEI composite were examined under scanning electron microscope (SEM). The variations of elastic modulus and surface hardness with variation in composition were also investigated. The results showed that under conditions of dry friction the PTFE can lower the friction coefficient and reduce wear of the PEI composites. When filled with 10 wt. % PTFE, the composite had the lowest wear rate. For PEI filled with 5wt. % PTFE the friction coefficient was about 0.3 and remained comparatively stable with increase of the PTFE content.


2010 ◽  
Vol 150-151 ◽  
pp. 1106-1109 ◽  
Author(s):  
Yong Kun Wang ◽  
Li Chen ◽  
Zhi Wei Xu

The glass fiber (GF) reinforced epoxy (EP) composites filled by nano-Al2O3, nano-TiO2, nano-SiO2 and multi-walled carbon nanotubes (MWCNTs) were prepared. The friction and wear behavior of composites under dry condition were evaluated with block-on-ring friction and wear tester. The morphologies of the worn surfaces of the composites were analyzed by scanning electric microscopy (SEM). The results show that 0.5 wt% MWCNTs and nano-TiO2 can significantly lower the friction coefficient and specific wear rate of composites, respectively, while 0.5 wt% nano-SiO2 and nano-Al2O3 can slightly lower the friction coefficient and specific wear rate of the composites.


2017 ◽  
Vol 69 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Jun Liu ◽  
Zhinan Zhang ◽  
Zhe Ji ◽  
Youbai Xie

Purpose This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against Ti-6Al-4V ball under dry and lubricated conditions. Design/methodology/approach The friction and wear mechanisms are analyzed by scanning electron microscope, energy dispersive spectroscopy and Raman spectroscopy. Findings The results show that as reciprocating frequency increases under lubricated conditions, the friction coefficient decreases first and then increases. When the reciprocating frequency is 2.54 Hz, the value of friction coefficient reaches the minimum. The friction reduction is because of the transformation from sp3 to sp2, the formation of transfer layer on Ti-6Al-4V ball and the reduction in viscous friction, whereas the increase of friction coefficient is related to wear. In dry conditions, the friction coefficient is between 0.06 and 0.1. And, the service life of H-DLC coating decreases with the increase in reciprocating frequency and normal load. Research limitations/implications It is confirmed that adding the lubricant could prolong the service life of H-DLC coating and reduce friction and wear efficiently. And, the wear mechanisms under dry and lubricated conditions encompass abrasive wear and adhesive wear. Originality/value The results are helpful for application of diamond-like carbon coating.


Author(s):  
Gao Wen ◽  
Chongsheng Long ◽  
Tang Rui ◽  
Jiping Wang

Carbon fiber reinforced carbon-silicon carbide composites (C/C-SiC) were prepared by chemical volume infiltration (CVI) method and reaction melt infiltration (RMI) technique of silicon liquid to carbon reinforce carbon matrix composites. The friction and wear behaviors of C/C-SiC composites at various loads and sliding speeds were investigated by MRH-3 block-on-ring tribometer at room temperature under water lubricating conditions. Furthermore, the morphologies, phase of the worn surface and the debris were observed, examined and analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) respectively. Experimental results showed that the C/C-SiC composites had a better wear resistence, and the friction coefficient under water lubricated conditions is about 0.02–0.06. The influence of sliding speed on the friction coefficients and the specific wear rate of C/C-SiC is more obvious than that of normal load when the load is less than 200N (inclueded200N). The friction coefficient and the specific wear rate of C/C-SiC decreased as the sliding velocity increased. At the sliding speed higher than 2m/s, the friction coefficient is less than 0.02. The specific wear rates is at a low level about (2×10−7mm3/Nm–5×10−8mm3/Nm).


2010 ◽  
Vol 139-141 ◽  
pp. 414-417 ◽  
Author(s):  
Xiao Ming Jia ◽  
Jin Rong Chai

9Cr2Mo steel is widely used as measuring and cutting tool steel. The friction and wear behavior of 9Cr2Mo steel was investigated under dry friction and solid lubricant by wear tester. The experiment results show that the friction coefficient of 9Cr2Mo steel is 0.34~0.58 under dry friction and 0.035~0.06 under solid lubricant. With the increase of load , the friction coefficient decreases and the wearing capacity increases under two kinds of conditions. The wearing capacity of 9Cr2Mo steel under solid lubricant is great lower than it under dry friction. The friction process is smooth under solid lubricant. It indicated that the solid lubricant took effect in antifriction and antiwear of 9Cr2Mo steel.


2017 ◽  
Vol 728 ◽  
pp. 229-234 ◽  
Author(s):  
Suchalinee Mathurosemontri ◽  
Supaphorn Thumsorn ◽  
Satoshi Nagai ◽  
Hiroyuki Hamada

Friction and wear behavior of Polyoxymethylene/Poly (lactic acid) blends (POM/PLA) was investigated to study effect of PLA content on friction and wear properties. The sliding experiments were carried out by Frictoron EFM-III machine. POM blends sliding against the carbon steel (AISI 1045) counterpart under 200 N of pressure load, 100 mm/s of sliding speed for 60 minutes. The wear weigh loss was measured after wear experiment. Wear profile and worn surface were observed by SEM. It was found that friction coefficient of neat POM is lower than neat PLA. However, the incorporation of PLA into POM led to an increment of friction coefficient of POM blends both of 40% and 60% PLA content that over than neat POM and PLA. While wear weigh loss resulted the increasing with increasing of PLA content, which were supported by wear prolife photographs. The deformation of neat PLA and blends on worn surface originated from adhesive due to the thermal softening and melting behavior, while neat POM reveals the plough action behavior.


Sign in / Sign up

Export Citation Format

Share Document