scholarly journals Selection of Immiscible Polymer Blends Filled with Carbon Nanotubes for Heating Applications

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1827 ◽  
Author(s):  
Marischal ◽  
Cayla ◽  
Lemort ◽  
Campagne ◽  
Devaux

In many application fields, such as medicine or sports, heating textiles use electrically conductive multifilaments. This multifilament can be developed from conductive polymer composites (CPC), which are blends of an insulating polymer filled with electrically conductive particles. However, this multifilament must have filler content above the percolation threshold, which leads to an increase of the viscosity and problems during the melt spinning process. Immiscible blends between two polymers (one being a CPC) can be used to allow the reduction of the global filler content if each polymer is co-continuous with a selective localization of the fillers in only one polymer. In this study, three immiscible blends were developed between polypropylene, polyethylene terephthalate, or polyamide 6 and a filled polycaprolactone with carbon nanotubes. The morphology of each blend at different ratios was studied using models of co-continuity and prediction of fillers localization according to viscosity, interfacial energy, elastic modulus, and loss factor of each polymer. This theoretical approach was compared to experimental values to find out differences between methods. The electrical properties (electrical conductivity and Joule effect) were also studied. The co-continuity, the selective localization in the polycaprolactone, and the Joule effect were only exhibited by the polypropylene/filled polycaprolactone 50/50 wt.%.

2018 ◽  
Vol 51 (1) ◽  
pp. 3-25 ◽  
Author(s):  
A Dorigato ◽  
V Freitas ◽  
JA Covas ◽  
MC Paiva ◽  
M Brugnara ◽  
...  

In this article, innovative electrically conductive polymer nanocomposites based on poly(butylene terephthalate) (PBT) filled with carbon nanotubes (CNTs) at different concentrations, to be used in the automotive field, have been investigated. Field emission scanning electron microscopy (FESEM) analysis revealed how a good nanofiller dispersion was obtained, especially by using surface treated nanotubes and by processing these materials using a more restrictive screw configuration. Melt flow index measurements highlighted that the processability of these nanocomposites was reduced at elevated filler amounts, even if CNT surface treatment promoted a partial retention of the fluidity of the neat PBT. Thermal degradation stability was improved upon the addition of CNT, even at limited filler amounts. Differential scanning calorimetry measurements evidenced how the presence of CNT slightly increased both the crystallization temperature and the crystalline fraction of the materials. The additivation of CNTs promoted a stiffening effect at elevated CNT contents, associated to an evident embrittlement of the samples. Electrical resistivity measurements showed that the most interesting results (i.e. 2.6 × 101 Ω·cm) were obtained for nanocomposites with a total filler content of 3 wt%, processed using the more restrictive screw configuration. For these materials, it was possible to obtain a rapid surface heating through Joule effect at applied voltages of 12 V.


2021 ◽  
pp. 11-21
Author(s):  
L.V. Solovyanchik ◽  
◽  
S.V. Kondrashov ◽  

Presents a review of the scientific literature on various methods for producing electrically conductive polymer materials and coatings. The prospects of using carbon nanotubes (CNT) to impart high electrical properties to the surface of materials are shown. The mechanism of formation of the structured surface of polymer materials with CNT is described. It is shown that the use of CNT is a promising way to impart electrically conductive and superhydrophobic properties to the surface.


2013 ◽  
Vol 543 ◽  
pp. 43-46
Author(s):  
Anežka Lengálová ◽  
Petr Slobodian ◽  
Robert Olejnik ◽  
Pavel Riha

A sensing element made of conductive composite created by an entangled network of electrically conductive carbon nanotubes embedded in polyurethane was used for simultaneous measurements of the pressure between the shoe and floor as well as the extension of the leg at the knee joint during marching. The results recorded as sensor resistance change show reasonable reversibility of the basic sensor characteristics, which gives potential for practical applications.


2019 ◽  
Vol 945 ◽  
pp. 443-447
Author(s):  
D. Zavrazhin ◽  
C. Zavrazhina

Studies of microwave radiation on polymeric materials have shown the possibility of modifying the characteristics of materials. At the same time, the efficiency of the microwave effect can be increased by introducing into the polymer matrix electrically conductive particles (carbon, metal particles, etc.). In this case, the absorption coefficient of the microwave waves is greatly increased. The paper evaluated the physical and mechanical properties of polyamide 6 subjected to microwave exposure. To intensify the microwave, well-proven carbon nanotubes were used, which were added to the polymer in small amounts. The most effective was the addition of carbon nanotubes in an amount of 1 wt%. The data obtained are changes in strength under tensile, Shore D hardness conditions, as well as thermophysical characteristics (heat resistance and change in the specific energy absorption rate in the melting zone of the samples). Microwave can be used as a modifying radiation, and as a method of heating polymers for subsequent molding in products. This method significantly reduces the technological process of obtaining materials and products with improved performance characteristics.


2020 ◽  
Vol 4 (2) ◽  
pp. 40 ◽  
Author(s):  
Ulrike Staudinger ◽  
Lothar Jakisch ◽  
Luise Hilbig

The influence of carbon nanotube (CNT) modification on the dispersion and localization behavior of the CNTs in immiscible blends of polystyrene (PS) and polybutadiene (PB), and in the nanostructured morphology of a star-shaped styrene-butadiene based block copolymer (BCP), was studied to form a basis for the development of functional materials with defined electrical property profiles. Unmodified multi-walled CNTs (MWCNTs) were dispersed in PS, PB and PS/PB blends by solution mixing. Additionally, MWCNTs were functionalized with n-octadecylamine and monoamino-terminated polystyrene to increase the compatibility between the homopolymers and the nanofiller. The MWCNT dispersion and the blend morphology formation were studied using transmission light microscopy and scanning electron microscopy. The MWCNT dispersion could be significantly improved by the modification of the MWCNTs. All MWCNT types were found to preferably localize in the PS phase of the PS/PB blend. However, only blends containing unmodified MWCNTs were electrically conductive. Similar effects were found in BCP/MWCNT composites. The BCP was already electrically conductive with a filler content of 0.1 wt % of unmodified MWCNTs. The stress–strain behavior of the BCP was slightly influenced by MWCNT addition and CNT modification. The dispersability of MWCNTs was significantly improved by CNT functionalization, which indicates a strong polymer-filler interaction.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Julie Regnier ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
Éric Devaux

In many textile fields, such as industrial structures or clothes, one way to detect a specific liquid leak is the electrical conductivity variation of a yarn. This yarn can be developed using melt spun of Conductive Polymer Composites (CPCs), which blend insulating polymer and electrically conductive fillers. This study examines the influence of the proportions of an immiscible thermoplastic/elastomer blend for its implementation and its water detection. The thermoplastic polymer used for the detection property is the polyamide 6.6 (PA6.6) filled with enough carbon nanotubes (CNT) to exceed the percolation threshold. However, the addition of fillers decreases the polymer fluidity, resulting in the difficulty to implement the CPC. Using an immiscible polymers blend with an elastomer, which is a propylene-based elastomer (PBE) permits to increase this fluidity and to create a flexible conductive monofilament. After characterizations (morphology, rheological and mechanical) of this blend (PA6.6CNT/PBE) in different proportions, two principles of water detection are established and carried out with the monofilaments: the principle of absorption and the short circuit. It is found that the morphology of the immiscible polymer blend had a significant role in the water detection.


Sign in / Sign up

Export Citation Format

Share Document