scholarly journals Melt Spinning of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Water Detection

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Julie Regnier ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
Éric Devaux

In many textile fields, such as industrial structures or clothes, one way to detect a specific liquid leak is the electrical conductivity variation of a yarn. This yarn can be developed using melt spun of Conductive Polymer Composites (CPCs), which blend insulating polymer and electrically conductive fillers. This study examines the influence of the proportions of an immiscible thermoplastic/elastomer blend for its implementation and its water detection. The thermoplastic polymer used for the detection property is the polyamide 6.6 (PA6.6) filled with enough carbon nanotubes (CNT) to exceed the percolation threshold. However, the addition of fillers decreases the polymer fluidity, resulting in the difficulty to implement the CPC. Using an immiscible polymers blend with an elastomer, which is a propylene-based elastomer (PBE) permits to increase this fluidity and to create a flexible conductive monofilament. After characterizations (morphology, rheological and mechanical) of this blend (PA6.6CNT/PBE) in different proportions, two principles of water detection are established and carried out with the monofilaments: the principle of absorption and the short circuit. It is found that the morphology of the immiscible polymer blend had a significant role in the water detection.

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6641
Author(s):  
Julie Regnier ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
Eric Devaux

By incorporating electrically conductive yarns into a waterproof membrane, one can detect epoxy resin cracking or liquid leakage. Therefore, this study examined the electrical conductivity variations of several yarns (metallic or carbon-based) for cracking and water detection. The first observations concerned the detectors’ feasibility by investigating their conductivity variations during both their resin implementation processes and their resin cracking. Throughout this experiment, two phenomena were detected: the compression and the separation of the fibres by the resin. In addition, the resin cracking had an important role in decreasing the yarns’ conductivity. The second part of this study concerned water detection. Two principles were established and implemented, first with yarns and then with yarns incorporated into the resin. First, the principle of absorption was based on the conductivity variation with the yarns’ swelling after contact with water. A short circuit was established by the creation of a conductive path when a drop of water was deposited between two conductive, parallel yarns. Through the influence of the yarns’ properties, this study explored the metallic yarns’ capacity to better detect water with a short circuit and the ability of the carbon-based yarns to detect water by the principle of absorption.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1827 ◽  
Author(s):  
Marischal ◽  
Cayla ◽  
Lemort ◽  
Campagne ◽  
Devaux

In many application fields, such as medicine or sports, heating textiles use electrically conductive multifilaments. This multifilament can be developed from conductive polymer composites (CPC), which are blends of an insulating polymer filled with electrically conductive particles. However, this multifilament must have filler content above the percolation threshold, which leads to an increase of the viscosity and problems during the melt spinning process. Immiscible blends between two polymers (one being a CPC) can be used to allow the reduction of the global filler content if each polymer is co-continuous with a selective localization of the fillers in only one polymer. In this study, three immiscible blends were developed between polypropylene, polyethylene terephthalate, or polyamide 6 and a filled polycaprolactone with carbon nanotubes. The morphology of each blend at different ratios was studied using models of co-continuity and prediction of fillers localization according to viscosity, interfacial energy, elastic modulus, and loss factor of each polymer. This theoretical approach was compared to experimental values to find out differences between methods. The electrical properties (electrical conductivity and Joule effect) were also studied. The co-continuity, the selective localization in the polycaprolactone, and the Joule effect were only exhibited by the polypropylene/filled polycaprolactone 50/50 wt.%.


2018 ◽  
Vol 6 (45) ◽  
pp. 12121-12141 ◽  
Author(s):  
Hu Liu ◽  
Qianming Li ◽  
Shuaidi Zhang ◽  
Rui Yin ◽  
Xianhu Liu ◽  
...  

Electrically conductive polymer composite-based smart strain sensors with different conductive fillers, phase morphology, and imperative features were reviewed.


2021 ◽  
pp. 11-21
Author(s):  
L.V. Solovyanchik ◽  
◽  
S.V. Kondrashov ◽  

Presents a review of the scientific literature on various methods for producing electrically conductive polymer materials and coatings. The prospects of using carbon nanotubes (CNT) to impart high electrical properties to the surface of materials are shown. The mechanism of formation of the structured surface of polymer materials with CNT is described. It is shown that the use of CNT is a promising way to impart electrically conductive and superhydrophobic properties to the surface.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
P. Wilson ◽  
C. Lekakou ◽  
J. F. Watts

A laboratory-scale inkjet printing system was designed for printing polymeric inks with the focus on PEDOT:PSS, a transparent, electrically conductive polymer. PEDOT:PSS inks with 0 and 1 wt. % Surfynol were tested rheologically in elongational and shear flows. A process model is presented and validated for the prediction of flow boundary after the ink exits the nozzle, including drop formation. Process optimization involved establishing a process window related to the voltage waveform, substrate temperature, speed and printed line-overlap, aiming at avoiding satellite drops, “coffee cup” rings, the Rayleigh instability, “stacked printed lines,” and discontinuities in the printed lines or films.


2014 ◽  
Vol 17 (3) ◽  
pp. 30-40
Author(s):  
Son Hoang Cao Tran ◽  
Quoc Kien Quoc ◽  
Nhan Thuc Chi Ha ◽  
Top Khac Le ◽  
Thang Bach Phan ◽  
...  

The nanostructured polymer-fullerene thin film is one of the most prominent materials to make the hybrid bulk heterojunction solar cell (BHJ) with high conversion efficiency. Especially when the blend of P3HT and PCBM was used as the donor and acceptor materials. The properties of P3HT and PCBM layer in solar cell has been much studied and considered as high performance systems. One of the important factors for the high performance device is the fabrication  of photo active layer with the appropriate thickness and morphology. In the ideal case, the intermolecular distance between the polymer and fullerene should be approximately 10-20 nm (the exciton diffusion distance) giving an area of extensive contact between the two phases. After the dissociation of carriers, the two polymer phases should create the path way for carriers to reach electrodes. But so far, this ideal configuration has not been published. In this work, we’ve elaborated the P3HT and PCBM photo active layers by spin coating methodon glass substrates covered ITO electrode. The rotational velocity was determined to get the necessary effective thickness of the polymer film. The annealing effect on structure, optical and electrical properties of the polymer thin film with different content of PCBM were also investigated. The experiments show the best device on electrode ITO has I-V characteristic as a photodiode and short circuit current (Isc) aboutmili-Ampere. These results demonstrate convincingly that polymer layers elaborated by spin coating method can result a good performance of the device.


Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18318-18325 ◽  
Author(s):  
Yan Wang ◽  
Fu-qiang Gu ◽  
Li-juan Ni ◽  
Kun Liang ◽  
Kyle Marcus ◽  
...  

Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications.


Author(s):  
Tanvir R. Tanim ◽  
Mayank Garg ◽  
Christopher D. Rahn

Internal short-circuiting is the most dangerous abuse scenario for lithium ion batteries. A nail penetration test simulates the internal short circuit process by penetrating a test cell/pack with an electrically conductive nail. Pass or failure of the cell and/or chemistry is determined by the presence of smoke or flame following penetration. To understand and eliminate the safety concerns arising from the internal shorts, it is important to fully understand the cell/pack dynamics during the shorting process. Gathering useful data at the point of penetration during nail penetration tests is very challenging due to the inherent destructive nature of the test. This paper presents an intelligent nail (iNail) design consisting of four parts where multiple sensors (thermo-couples, strain gauges, etc.) can be conveniently placed for reliable and efficient data collection. The time history of temperature distributions through the cell/pack thickness can be recorded with the iNail without position control of the nail penetration tester, greatly simplifying the test. A prototype stainless steel iNail is manufactured with three embedded thermocouples. Nail penetration tests are conducted on fully charged 4 Ah gr/NCM pouch cells. The iNail successfully recorded the temperature time history at the penetration point during the tests. Pack level nail penetration tests (three pouch cells in parallel) were also performed with iNail temperature measurements.


Sign in / Sign up

Export Citation Format

Share Document