scholarly journals Development of Water-Compatible Molecularly Imprinted Polymers Based on Functionalized β-Cyclodextrin for Controlled Release of Atropine

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Yahui He ◽  
Shaomei Zeng ◽  
A. M. Abd El-Aty ◽  
Ahmet Hacımüftüoğlu ◽  
Woldemariam Kalekristos Yohannes ◽  
...  

Herein, a novel method for molecularly imprinted polymers (MIPs) using methacrylic acid functionalized beta-cyclodextrin (MAA-β-CD) monomer is presented, which was designed as a potential water-compatible composite for the controlled release of atropine (ATP). The molecularly imprinted microspheres with pH-sensitive characteristics were fabricated using thermally-initiated precipitation polymerization, employing ATP as a template molecule. The effects of different compounds and concentrations of cross-linking agents were systematically investigated. Uniform microspheres were obtained when the ratio between ATP, MAA-β-CD, and trimethylolpropane trimethacrylate (TRIM) was 1:4:20 (mol/mol/mol) in polymerization system. The ATP loading equilibrium data was best suited to the Freundlich and Langmuir isotherm models. The in vitro drug release study was assessed under simulated oral administration conditions (pH 1.5 and 7.4). The potential usefulness of MIPs as drug delivery devices are much better than non-molecularly imprinted polymers (NIPs). The study shows that the prepared polymers are a pH stimuli-responsive system, which controlled the release of ATP, indicating the potential applications in the field of drug delivery.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3589
Author(s):  
Rui Liu ◽  
Alessandro Poma

Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Ortensia Ilaria Parisi ◽  
Mariarosa Ruffo ◽  
Rocco Malivindi ◽  
Anna Francesca Vattimo ◽  
Vincenzo Pezzi ◽  
...  

Cytotoxic agents that are used conventionally in cancer therapy present limitations that affect their efficacy and safety profile, leading to serious adverse effects. In the aim to overcome these drawbacks, different approaches have been investigated and, among them, theranostics is attracting interest. This new field of medicine combines diagnosis with targeted therapy; therefore, the aim of this study was the preparation and characterization of Molecularly Imprinted Polymers (MIPs) selective for the anticancer drug Sunitinib (SUT) for the development of a novel theranostic system that is able to integrate the drug controlled release ability of MIPs with Rhodamine 6G as a fluorescent marker. MIPs were synthesized by precipitation polymerization and then functionalized with Rhodamine 6G by radical grafting. The obtained polymeric particles were characterized in terms of particles size and distribution, ξ-potential and fluorescent, and hydrophilic properties. Moreover, adsorption isotherms and kinetics and in vitro release properties were also investigated. The obtained binding data confirmed the selective recognition properties of MIP, revealing that SUT adsorption better fitted the Langmuir model, while the adsorption process followed the pseudo-first order kinetic model. Finally, the in vitro release studies highlighted the SUT controlled release behavior of MIP, which was well fitted with the Ritger-Peppas kinetic model. Therefore, the synthesized fluorescent MIP represents a promising material for the development of a theranostic platform for Sunitinib controlled release and self-monitoring in cancer therapy.


2019 ◽  
Vol 20 (7) ◽  
pp. 1588
Author(s):  
Renata Gadzała-Kopciuch ◽  
Katarzyna Kwaśniewska ◽  
Agnieszka Ludwiczak ◽  
Piotr Skrzyniarz ◽  
Rafał Jakubowski ◽  
...  

A method of purifying cyclododecyl 2,4-dihydroxybenzoate as a potential replacement template molecule for preparation of molecularly-imprinted polymers for isolation of zearalenone in urine was developed. Full physicochemical characteristics of cyclododecyl 2,4-dihydroxybenzoate for the first time included crystallographic analysis and molecular modelling, which made possible the determination of the similarity between the cyclododecyl 2,4-dihydroxybenzoate and zearalenone molecules. The obtained molecularly-imprinted polymers show very high in vitro selectivity towards zearalenone due to specific interactions (e.g., hydrogen bonding, molecular recognition interaction). The achieved extraction recovery exceeds 94% at the tested concentration levels (20–500 ng·mL−1) with a relative standard deviation below 2%. Immunosorbents were found to have lower recoveries (below 92.5%) and RSD value between 2 and 4% for higher concentrations of the studied substance (400 ng·mL−1).


The Analyst ◽  
2021 ◽  
Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravani ◽  
Rajender S Varma

Molecularly imprinted polymers (MIPs) have numerous applications in sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are...


The Analyst ◽  
2015 ◽  
Vol 140 (9) ◽  
pp. 3113-3120 ◽  
Author(s):  
Elena V. Piletska ◽  
Bashar H. Abd ◽  
Agata S. Krakowiak ◽  
Anitha Parmar ◽  
Demi L. Pink ◽  
...  

A novel format of the microtitre plate equipped with magnetic inserts allows rapid and cost-effective development of the controlled release materials.


RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 94038-94047 ◽  
Author(s):  
Xiao-Lin Wang ◽  
Hong-Fei Yao ◽  
Xiu-Yuan Li ◽  
Xu Wang ◽  
Yan-Ping Huang ◽  
...  

Frontal polymerization was successfully utilized, for the first time, to obtain pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs).


Sign in / Sign up

Export Citation Format

Share Document