scholarly journals Simultaneous Enhancement of Photocatalytic Bactericidal Activity and Strength Properties of Acrylonitrile-Butadiene-Styrene Plastic Via a Facile Preparation with Silane/TiO2

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 917 ◽  
Author(s):  
Kunlanan Kiatkittipong ◽  
Jun Wei Lim ◽  
Chin Kui Cheng ◽  
Worapon Kiatkittipong ◽  
Suttichai Assabumrungrat

This work aims to enhance the photocatalytic antibacterial performance of plastics according to the JIS Z 2801:2010 standard, and to determine their mechanical properties by studying: (i) the influence of calcination on titanium dioxide (TiO2); (ii) modification with different TiO2 concentrations, and; (iii) the effect of silane as a coupling agent. Acrylonitrile-butadiene-styrene plastics (ABS) and Escherichia coli (E. coli) were chosen as the model plastic and bacteria, respectively. The 500 °C calcined TiO2 successfully provided the best photoantibacterial activity, with an approximately 62% decrease of E. coli colony counts following 30 min of exposure. Heat treatment improved the crystallinity of anatase TiO2, resulting in low electron-hole recombination, while effectively adsorbing reactants on the surface. ABS with 500 °C-calcined TiO2 at the concentration of 1 wt % gave rise to the highest performance due to the improved distribution of TiO2. At this point, blending silane coupling agent could further improve the efficacy of photoantibacterial activity up to 75% due to greater interactions with the polymer matrix. Moreover, it could promote a 1.6-fold increase of yield strength via increased adherent bonding between TiO2 and the ABS matrix. Excellent photocatalytic and material stability can be achieved, with constant photocatalytic efficiency remaining for up to five reuse cycles without loss in the yield strength.

2018 ◽  
Vol 24 (8) ◽  
pp. 1281-1287 ◽  
Author(s):  
Filip Górski ◽  
Wiesław Kuczko ◽  
Radosław Wichniarek ◽  
Adam Hamrol

Purpose This paper aims to study strength properties and accuracy of a new type of composites, in which matrix is manufactured additively, whereas infill is a polyurethane resin. The process of manufacturing these composites is invented and patented by authors. Design/methodology/approach The authors developed a method of manufacturing composites, which was then used to build samples for tensile and bending tests (according to ISO 572 and ISO 178 standards), as well as measurements of accuracy. Findings It was found that the method of composite manufacturing designed by the authors allows obtaining both stronger and cheaper parts in comparison with the traditional acrylonitrile butadiene styrene FDM parts. Research limitations/implications The research was limited to static tests only, and no dynamic tests were performed on the manufactured samples. The accuracy analysis is only a basic one. Practical implications Developed method allows to shorten the FDM process with simultaneous decrease of costs (in professional processes) and increase of strength of obtained products. Originality/value Application of composite materials presented in the paper will significantly expand possibilities of using FDM method to manufacture functional, strong parts able to carry higher loads. Application of different combinations of thermoplastic matrix materials with different resin infills will allow to control properties of obtained composites. The solution is currently subject of a patent.


2021 ◽  
Vol 309 ◽  
pp. 01148
Author(s):  
Abdul Quader Shurjeel ◽  
Narendra Pothula ◽  
Eshwaraiah Punna

Owing to the huge demand and dependency of the industry on the lightweight and superior mechanical properties products as well as components, the materials like CF-ABS (Acrylonitrile Butadiene Styrene reinforced with carbon fibers) and PC-ABS (Acrylonitrile Butadiene Styrene reinforced with polycarbonate) have gained utmost importance in the current scenario. The present research in this paper focuses on finding the mechanical properties, mainly the tensile, compression, and flexural properties of both the above-said materials. FDM (Fused Deposition Modelling) is used as the printing technique in this research as it is the most suitable and widely used for the selected materials. After experimentation, a comparison was made between the two materials, and it is found that the PC-ABS material is stronger in compression, tension as well as in flexural at all the parametric settings. The infill percentage was observed to be proportional to the strength of the material as expected. Triangular infill geometry was more strong in compression and flexural whereas grid infill geometry was strong in tension. produced stronger mechanical properties were observed for 0-degree raster angle in all the three criteria compared to the 45 and 90-degree raster angles. When the variation of the strength of the material with the infill geometry was observed, the infill geometry was more sensitive in compression and flexural compared to that in tension. The load vs. displacement curves have been plotted to depict the maximum load and the behavior of the material in the elastic and plastic regions.


Author(s):  
M. S. Uddin ◽  
M. F. R. Sidek ◽  
M. A. Faizal ◽  
Reza Ghomashchi ◽  
A. Pramanik

This paper presents a comprehensive experimental study in exploring the influence of key printing parameters on mechanical properties and failure mechanisms of acrylonitrile butadiene styrene (ABS) material. Three parameters with three levels—layer thickness (0.09 mm, 0.19 mm, and 0.39 mm), printing plane (XY, YZ, and ZX), and printing orientation (horizontal, diagonal, and vertical)—are considered, which form an L27 experimental design. Following L27, tensile and compressive specimens are fabricated and tested. Young's modulus, yield strength, failure strength, and strain of specimens are measured, evaluated, and compared with their injection-molded counterparts. Experimental results indicate that tensile specimens with a layer thickness of 0.09 mm and printing plane orientation of YZ-H reveal the highest stiffness and failure strength. While injection-molded specimen shows the highest yield strength, ductility of printed specimens is 1.45 times larger than that of injection-molded part. YZ along with XY specimens shows a neat and clean standard fracture failure at 45 deg, where the layers reorient themselves followed by stretching before fracture failure, thus providing sufficient ductility as opposed to ZX specimens, which fail along the direction perpendicular to the loading. Compressive XY-H and XY-D specimens have the highest stiffness and yield strength, and failure mechanisms involve initial compression followed by squeezing of layers leading to compactness followed by breakage due to tearing off or fracture of layers. The findings imply that anisotropy of fused deposition modeling (FDM) parts cannot be avoided and hence the appropriate parameters must be chosen, which satisfy the intended properties of the material subject to specific loading scenario.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012107
Author(s):  
V V Volkov-Muzylev ◽  
L E Vendland ◽  
Yu A Borisov ◽  
A N Demidov ◽  
N K Fominykh

Abstract An article is devoted to the study of the strength properties of interlayer adhesion and determination of Young's modulus by the ball instrumental indentation method for samples, made of various plastics using additive technology under normal conditions. This production method is chosen as the most appropriate for creating lightly stressed parts of complex geometry (up to 30 MPa) in the shortest possible time. One of the possible options for such products is full-size centrifugal wheels layouts of low power gas turbine units (up to 250 kW) for testing them in model conditions. It will ensure the work of the material in the elastic zone. The samples are considered, obtained by FDM method from various polymers such as: acrylonitrile butadiene styrene thermoplastic resin (ABS+), acrylonitrile butadiene styrene thermoplastic resin with addition of carbon fibers (ABS Carbon), nylon with addition of carbon fibers (Nylon Super Carbon), polyethylene terephthalate glycol (PETG) and a compound based on polylactide (PLA HP). Plastics, made by this method, have anisotropic properties. Therefore, in this work, the strength characteristics of the test samples interlayer adhesion under tension are determined.


2017 ◽  
Vol 37 (7) ◽  
pp. 699-706 ◽  
Author(s):  
Maksym Rybachuk ◽  
Charlène Alice Mauger ◽  
Thomas Fiedler ◽  
Andreas Öchsner

Abstract The anisotropic mechanical properties of parts that are fabricated using acrylonitrile butadiene styrene (ABS) polymer relative to part-built orientation employing the fused deposition modelling process are reported in this work. ABSplus-P430 polymer was used to investigate the effects of infill orientation on the parts’ mechanical properties under tensile and compression loading. Results revealed that infill orientation strongly affected the tensile properties of fabricated ABS samples. Specifically, the values for Young’s modulus ranged from ~1.5 to ~2.1 GPa, ultimate tensile strength from ~12.0 to ~22.0 MPa, yield strength from ~1.0 to ~21.0 MPa, and elongation-at-break from ~0.2 to ~4.8% for different infill orientations. Samples with infill orientation aligned to the vertical (i.e. Z-) axis displayed the highest values relative to all other infill orientations investigated. Mechanical properties anisotropy was lower for parts under compressive loading, such that the Young’s modulus, ultimate compressive and yield strength were weakly correlated with infill orientation apart from samples whose built orientation was aligned at 45° to the vertical Z-axis. The latter samples displayed inferior mechanical properties under all compressive tests. The effects of sample gauge thickness on tensile properties and ABS sample micro- and bulk- hardness with respect to infill orientation are also discussed.


Sign in / Sign up

Export Citation Format

Share Document