scholarly journals One-Step Synthesis of Novel Renewable Vegetable Oil-Based Acrylate Prepolymers and Their Application in UV-Curable Coatings

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1165 ◽  
Author(s):  
Yupei Su ◽  
Hai Lin ◽  
Shuting Zhang ◽  
Zhuohong Yang ◽  
Teng Yuan

With the rapid development of social economy, problems such as volatile organic compound (VOC) pollution and the excessive consumption of global petroleum resources have become increasingly prominent. People are beginning to realize that these problems not only affect the ecological environment, but also hinder the development of the organic polymer material industry based on raw fossil materials. Therefore, the modification and application of bio-based materials are of theoretical and practical significance. In this study, a series of vegetable oil-based acrylate prepolymers were synthesized by one-step acrylation using palm oil, olive oil, peanut oil, rapeseed oil, corn oil, canola oil, and grapeseed oil as raw materials, and the effect of different double bond contents on the product structure and grafting rate was investigated. Furthermore, the as-prepared vegetable oil-based acrylate prepolymers, polyurethane acrylate (PUA-2665), trimethylolpropane triacrylate (TMPTA), and photoinitiator (PI-1173) were mixed thoroughly to prepare ultraviolet (UV)-curable films. The effect of different grafting numbers on the properties of these films was investigated. The results showed that as the degree of unsaturation increased, the acrylate grafting number and the cross-linking density increased, although the acrylation (grafting reaction) rate decreased. The reason was mainly because increasing the double bond content could accelerate the reaction rate, while the grafted acrylic groups had a steric hindrance effect to prevent the adjacent double bonds from participating in the reaction. Furthermore, the increase in grafting number brought about the increase in the structural functionality of prepolymers and the cross-linking density of cured films, which led to the enhancement in the thermal (glass transition temperature) and mechanical (tensile strength, Young’s modulus) properties of the cured films.

2001 ◽  
Vol 34 (13) ◽  
pp. 4526-4533 ◽  
Author(s):  
Bor-Sen Chiou ◽  
Srinivasa R. Raghavan ◽  
Saad A. Khan

2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


2021 ◽  
Vol 45 (16) ◽  
pp. 7089-7095
Author(s):  
Bo Wang ◽  
Jinsheng Sun ◽  
Kaihe Lv ◽  
Feng Shen ◽  
Yingrui Bai

The Cr3+ can improve the cross-linking degree and network density of the GP-A gel, and enhance its strength and plugging ability to control lost circulation.


Author(s):  
Jiaqian Zhou ◽  
Peng Peng ◽  
Zhao Li ◽  
Lirong Liang ◽  
Xuan Huang ◽  
...  

The rapid development of flexible organic electrics calls for reliable energy supply. Organic polymer thermoelectrics (TEs) that can realize direct heat-to-electricity conversion are receiving tremendous attention because of their irreplaceable...


Sign in / Sign up

Export Citation Format

Share Document