scholarly journals Application of the Finite Element Method to the Incremental Forming of Polymer Sheets: The Thermomechanical Coupled Model and Experimental Validations

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1715
Author(s):  
A. García-Collado ◽  
Gustavo Medina-Sanchez ◽  
Munish Kumar Gupta ◽  
R. Dorado-Vicente

Single Point Incremental Forming (SPIF) is an innovative die-less low-cost forming method. Until now, there have not been viable numerical solutions regarding computational time and accuracy for the incremental forming of polymers. Unlike other numerical approaches, this novel work describes a coupled thermomechanical finite element model that simulates the SPIF of polymer sheets, where a simple elastoplastic constitutive equation rules the mechanical behavior. The resulting simulation attains a commitment between time and accuracy in the prediction of forming forces, generated and transmitted heat, as well as final part dimensions. An experimental test with default process parameters was used to determine an adequate numerical configuration (element type, mesh resolution, and material model). Finally, compared to a set of experimental tests with different thermoplastics, the proposed model, which does not consider complex rheological material models, shows a good agreement with an approximation error of less than 11% in the vertical forming force prediction.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1597 ◽  
Author(s):  
Gustavo Medina-Sanchez ◽  
Alberto Garcia-Collado ◽  
Diego Carou ◽  
Rubén Dorado-Vicente

Incremental sheet forming (ISF) is gaining attention as a low cost prototyping and small batch production solution to obtain 3D components. In ISF, the forming force is key to define an adequate setup, avoiding damage and reducing wear, as well as to determine the energy consumption and the final shape of the part. Although there are several analytical, experimental and numerical approaches to estimate the axial forming force for metal sheets, further efforts must be done to extend the study to polymers. This work presents two procedures for predicting axial force in Single Point Incremental Forming (SPIF) of polymer sheets. Particularly, a numerical model based on the Finite Element Model (FEM), which considers a hyperelastic-plastic constitutive equation, and a simple semi-analytical model that extends the known specific energy concept used in machining. A set of experimental tests was used to validate the numerical model, and to determine the specific energy for two polymer sheets of polycarbonate (PC) and polyvinyl chloride (PVC). The approaches provide results in good agreement with additional real examples. Moreover, the numerical model is useful for accurately predicting temperature and thickness.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6794
Author(s):  
Zhou Yan ◽  
Hany Hassanin ◽  
Mahmoud Ahmed El-Sayed ◽  
Hossam Mohamed Eldessouky ◽  
Joy Rizki Pangestu Djuansjah ◽  
...  

Single-point incremental forming (SPIF) is a flexible technology that can form a wide range of sheet metal products without the need for using punch and die sets. As a relatively cheap and die-less process, this technology is preferable for small and medium customised production. However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the thickness uniformity of the shaped part. This research aims to optimise the formed part geometric accuracy and reduce the processing time of a two-stage forming strategy of SPIF. Finite element analysis (FEA) was initially used and validated using experimental literature data. Furthermore, the design of experiments (DoE) statistical approach was used to optimise the proposed two-stage SPIF technique. The mass scaling technique was applied during the finite element analysis to minimise the computational time. The results showed that the step size during forming stage two significantly affected the geometrical accuracy of the part, whereas the forming depth during stage one was insignificant to the part quality. It was also revealed that the geometrical improvement had taken place along the base and the wall regions. However, the areas near the clamp system showed minor improvements. The optimised two-stage strategy successfully decreased both the geometrical inaccuracy and processing time. After optimisation, the average values of the geometrical deviation and forming time were reduced by 25% and 55.56%, respectively.


2016 ◽  
Vol 836-837 ◽  
pp. 452-461
Author(s):  
P.Y. Li ◽  
Qiang Liu ◽  
Wu Run An ◽  
Shu Juan Li

This paper briefly describes the principle of the ultrasonic single point incremental forming of the sheet metal. In which we established the finite element model and finished the finite simulation with ABAQUS. According to the simulation result, we analyzed the influence law of vibration frequency of the axis on the distribution of the stress and strain of the sheet metal, the thickness, and the axial force in the process of ultrasonic single point incremental forming of the sheet metal. The result shows that the influence on the stress and thickness of the sheet metal is minimal, and the influence on the strain follows the law of cosines in which the strain is minimum when the vibration frequency is equal to 15kHZ.The influence on the axial force is that when the frequency is f=0kHz~40kHz the axial force decreases with the increase of the frequency. However, the axial force increased dramatically with the increase of the frequency when the frequency is above 40kHz.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


2014 ◽  
Vol 17 (1) ◽  
pp. 21-28
Author(s):  
Dien Khanh Le ◽  
Nam Thanh Nguyen ◽  
Binh Thien Nguyen

Single Point Incremental Forming (SPIF) has become popular for metal sheet forming technology in industry in many advanced countries. In the recent decade, there were lots of related studies that have concentrated on this new technology by Finite Element Method as well as by empirical practice. There have had very rare studies by pure analytical theory and almost all these researches were based on the formula of ISEKI. However, we consider that this formula does not reflect yet the mechanics of destruction of the sheet work piece as well as the behavior of the sheet in reality. The main aim of this paper is to examine ISEKI’s formula and to suggest a new analytical computation of three elements of stresses at any random point on the sheet work piece. The suggested formula is carefully verified by the results of Finite Element Method simulation.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


2020 ◽  
Vol 72 (5) ◽  
pp. 687-693
Author(s):  
Liuqing Yang ◽  
Ming Hu ◽  
Deming Zhao ◽  
Jing Yang ◽  
Xun Zhou

Purpose The purpose of this paper is to develop a novel method for analyzing wheel-rail (W-R) contact using thermo-mechanical measurements and study the effects of heating on the characteristics of W-R contact under different creepages. Design/methodology/approach This study developed an implicit-explicit finite element (FE) model which could solve both partial slip and full sliding problems by setting different angular velocities on the wheels. Based on the model, four material types under six different creepages were simulated. Findings The results showed that frictional heating significantly affected the residual stress distribution under large creepage conditions. As creepage increased, the temperature of the wheel tread and rail head rose and the peak value was located at the trailing edge of the contact patch. Originality/value The proposed FE model could reduce computational time and thus cost to about one-third of the amount commonly found in previous literature. Compared to other studies, these results are in good agreement and offer a reasonable alternative method for analyzing W-R contact under various conditions. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0298


2011 ◽  
Vol 217-218 ◽  
pp. 1758-1762
Author(s):  
Tao Chang

As the most potential member in the textile composite material, stitched textile composites have already been paid a lot attention. By the simply technology form and relatively low cost, stitched composites had attracted many domestic and foreign researchers, and were gradually used in various engineering practice. This paper using 3D micro-finite element method researches the mechanical behavior and performance of stitched composites, establishing a 3D micro-finite element model for the stitched composites under the improved locking suture way. Through analysis, it shows that each material’s stress distribution characteristics under external loading and finds that the results of this paper’s finite element data results matching well with previous studies’ results, proving the feasibility of this study, so it can be used for forecasting the mechanical properties of a variety of practical stitched composites.


2016 ◽  
Vol 33 (5) ◽  
pp. 1388-1421 ◽  
Author(s):  
José I.V. Sena ◽  
Cedric Lequesne ◽  
L Duchene ◽  
Anne-Marie Habraken ◽  
Robertt A.F. Valente ◽  
...  

Purpose – Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced. Design/methodology/approach – SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years. Findings – In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results. Originality/value – It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.


Sign in / Sign up

Export Citation Format

Share Document