scholarly journals Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2093
Author(s):  
Long Mao ◽  
Jianda Xie ◽  
Huiqing Wu ◽  
Yuejun Liu

Inspired by complexation and mussel adhesion of catechol groups in tannic acid (TA), organophilic layered double hydroxides (LDHs@TA-Ti) were synthesized by forming a one-pot assembled TA-titanium (Ti) dual network coating on the surface of layered clay for the first time. LDHs@TA-Ti/poly(vinyl alcohol) (PVA) nanocomposites were prepared by the solution casting method. The results show that TA-Ti(IV) and TiO2 coordination compounds are simultaneously formed due to hydrolysis of titanium tetrachloride and complexation of TA in aqueous solution. Upon TA-Ti coatings onto the surface of LDHs, the antibacterial rate of LDHs@TA-Ti is up to 99.98%. Corresponding LDHs@TA-Ti/PVA nanocomposites also show outstanding antibacterial properties. Compared with pure PVA, LDHs@TA-Ti/PVA nanocomposites show a 40.9% increase in tensile strength, a 17.5% increase in elongation at break, a 35.9% decrease in oxygen permeability and a 26.0% decrease in water vapor permeability when adding 1 wt % LDHs@TA-Ti. UV transmittance (at 300 nm) of LDHs@TA-Ti/PVA nanocomposites decrease by 99.4% when the content of LDHs@TA-Ti reaches 3 wt %. These results indicate that PVA matrix incorporated with LDHs@TA-Ti could be used as a potential active packaging material to extend the shelf life of food products.

2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1510-S1519
Author(s):  
Seyed Mehdi Mirabolghasemi ◽  
Mohsen Najafi ◽  
Alireza Azizi ◽  
Mehdi Haji Bagherian

This study is aimed to investigate the effect of the simultaneous incorporation of cellulose nanocrystals (CNC) and silver nanoparticles (SN) on the mechanical, biodegradability, and water vapor permeability of polylactic acid (PLA)-based films. PLA films and their nanocomposites containing different levels of CNC (0.333, 1 and 1.667 phr) and SN (0.333 phr) were prepared by solution casting method. CNC was reacted with acetic anhydride to improve its compatibility and miscibility with PLA. Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), tensile test, and water vapor permeability and antibacterial tests were employed to characterize the samples. The biodegradability was assessed by measuring the weight loss upon burial in the soil. FTIR spectroscopy confirmed the modification of cellulose nanocrystals. TGA test showed that partial acetylation slightly improved the thermal stability of CNC. The presence of cellulose nanocrystals increased the tensile strength and modulus of elasticity of the nanocomposite relative to pure polylactic acid. The biodegradability and water vapor permeability of the samples decreased upon CNC incorporation. The antibacterial properties of the films showed the higher resistance of the gram-positive bacteria as their cell walls include a peptidoglycan layer.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-feng Chen ◽  
Jun-li Ren ◽  
Ling Meng

A series of composite films were prepared using poly(vinyl alcohol) (PVA) and xylan as degradable raw materials under the addition of glycerol and ammonium zirconium carbonate (AZC). The influences of AZC on the mechanical properties, water-resisting properties, thermal stability, solubility (S), and water vapor permeability of PVA/xylan composite films were comparatively discussed. The results showed that AZC had a positive impact on improving the water resistance and mechanical properties of composite films especially for elongation at break (EAB). With increasing the AZC amounts from 0% to 15%, EAB increased rapidly from 18.5% to 218.0%, and theSvalues decrease from 11.64% to 8.64%. When the AZC amount reached 15%, the tensile strength still performed well (22.10 MPa). The great compatibility of components in composite films was also observed. Moreover, the addition of AZC had great influences on the thermal stability of composite films and the degradation in soil.


2010 ◽  
Vol 96 ◽  
pp. 75-79 ◽  
Author(s):  
Jun Feng Su ◽  
Wen Long Xia ◽  
Wen Li ◽  
Ke Man Jin

The aim of the present work was to investigate the moisture sensitivity of soy protein isolate (SPI) films blending with poly (vinyl alcohol) (PVA) plasticized by glycerol. Water vapor permeability (WVP) was measured based on the contents of PVA and glycerol in films. WVP values of various SPI/PVA films with/without glycerol were in the range of 8.25 and 10.9 g mm/m2 h kPa. The results showed that WVP values decreased with the increasing content of PVA. Moreover, XRD tests confirmed that the glycerol would insert into the macromolecular blending structure and destroy the crystalline of blends, and the crosslinkage between glycerol molecules and SPI reduced the interstitial spaces in protein matrix, thus allowing for decreasing diffusion rate of water molecules through the films.


2015 ◽  
Vol 30 (7) ◽  
pp. 1017-1030 ◽  
Author(s):  
Wentao Wang ◽  
Hui Zhang ◽  
Yangyong Dai ◽  
Hanxue Hou ◽  
Haizhou Dong

Biodegradable films from hydroxypropyl distarch phosphate (HPDSP)/poly(vinyl alcohol) (PVA) and cationic starch/PVA blends were obtained by extrusion blowing at ratios of 100:0, 95:5, 90:10, 85:15, and 80:20. The morphology, X-ray patterns, transparency, mechanical properties, thermal properties, and water vapor permeability (WVP) of the films were measured and compared. Scanning electron microscopic micrographs of the films showed continuous matrix texture as well as better compatibility between modified starches and PVA. X-Ray diffraction indicated the formation of ordered crystalline structures in the films during extrusion blowing. The addition of PVA to modified starches significantly increased their tensile strength (TS, 3.92 MPa) while decreasing their water vapor permeability (WVP, 3.23 × 10−10 g m−1 s−1 Pa−1). The starch/PVA composite films did not show phase separation.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


2020 ◽  
Vol 17 (6) ◽  
pp. 1587-1596
Author(s):  
Ilke Gurol ◽  
Cagatay Altinkok ◽  
Esra Agel ◽  
Cihat Tasaltin ◽  
Mahmut Durmuş ◽  
...  

Soft Matter ◽  
2022 ◽  
Author(s):  
Xiangqian Gao ◽  
Tiantian Deng ◽  
Xindi Huang ◽  
Mengmeng Yu ◽  
Danyang Li ◽  
...  

A new composite hydrogels with excellent self-healing properties was prepared by combining poly(vinyl alcohol) (PVA) and boron nitride nanofibers (BNNFs) via a facile one-pot assembly method. One-dimensional porous BNNFs with...


Sign in / Sign up

Export Citation Format

Share Document