scholarly journals Mechanical Strength Enhancement of 3D Printed Acrylonitrile Butadiene Styrene Polymer Components Using Neural Network Optimization Algorithm

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2250 ◽  
Author(s):  
Jasgurpreet Singh Chohan ◽  
Nitin Mittal ◽  
Raman Kumar ◽  
Sandeep Singh ◽  
Shubham Sharma ◽  
...  

Fused filament fabrication (FFF), a portable, clean, low cost and flexible 3D printing technique, finds enormous applications in different sectors. The process has the ability to create ready to use tailor-made products within a few hours, and acrylonitrile butadiene styrene (ABS) is extensively employed in FFF due to high impact resistance and toughness. However, this technology has certain inherent process limitations, such as poor mechanical strength and surface finish, which can be improved by optimizing the process parameters. As the results of optimization studies primarily depend upon the efficiency of the mathematical tools, in this work, an attempt is made to investigate a novel optimization tool. This paper illustrates an optimization study of process parameters of FFF using neural network algorithm (NNA) based optimization to determine the tensile strength, flexural strength and impact strength of ABS parts. The study also compares the efficacy of NNA over conventional optimization tools. The advanced optimization successfully optimizes the process parameters of FFF and predicts maximum mechanical properties at the suggested parameter settings.

2019 ◽  
Vol 25 ◽  
pp. 41-47 ◽  
Author(s):  
Mattia Frascio ◽  
Lorenzo Bergonzi ◽  
Michal Jilich ◽  
Fabrizio Moroni ◽  
Massimiliano Avalle ◽  
...  

The work illustrates how building parameters of the Additive Manufacturing process Fused Filament Fabrication can affect not only the mechanical properties but also the surface wettability and morphology. Wettability and morphology are relevant factors in bonded joints performance. Advantages of polymeric additive manufacturing are to allow a re-design of components with locally controlled properties and integrated functions. Major limitations are related to the lack of material testing standardization and constraints due to the build volume and to the object orientation for printability: the latter problem scan be addressed with the use of bonded joints that allow to create bigger assemblies from smaller parts optimally designed to take advantage of material orthotropy and without the structural drawbacks. In this study, two materials are considered, acrylonitrile butadiene styrene and polylactideacid. Wettability, surface morphology and mechanical strength have been determined at different combinations of nozzle temperature, print speed and layer thickness.


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2521 ◽  
Author(s):  
Miquel Domingo-Espin ◽  
J. Antonio Travieso-Rodriguez ◽  
Ramon Jerez-Mesa ◽  
Jordi Lluma-Fuentes

In this paper, the fatigue response of fused filament fabrication (FFF) Acrylonitrile butadiene styrene (ABS) parts is studied. Different building parameters (layer height, nozzle diameter, infill density, and printing speed) were chosen to study their influence on the lifespan of cylindrical specimens according to a design of experiments (DOE) using the Taguchi methodology. The same DOE was applied on two different specimen sets using two different infill patterns—rectilinear and honeycomb. The results show that the infill density is the most important parameter for both of the studied patterns. The specimens manufactured with the honeycomb pattern show longer lifespans. The best parameter set associated to that infill was chosen for a second experimental phase, in which the specimens were tested under different maximum bending stresses so as to construct the Wöhler curve associated with this 3D printing configuration. The results of this study are useful to design and manufacture ABS end-use parts that are expected to work under oscillating periodic loads.


2018 ◽  
Vol 24 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Joseph Bartolai ◽  
Timothy W. Simpson ◽  
Renxuan Xie

Purpose The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition toolpaths or “roads”. This study aims to predict the mechanical strength of parts by utilizing a novel analytical approach. Strength predictions are made using the temperature history of these interfaces, polymer rheological data, and polymer weld theory. Design/methodology/approach The approach is validated using experimental data for two common 3D-printed polymers: polycarbonate (PC) and acrylonitrile butadiene styrene (ABS). Interface temperature history data are collected in situ using infrared imaging. Rheological data of the polycarbonate and acrylonitrile butadiene styrene used to fabricate the fused filament fabrication parts in this study have been determined experimentally. Findings The strength of the interfaces has been predicted, to within 10% of experimental strength, using polymer weld theory from the literature adapted to the specific properties of the polycarbonate and acrylonitrile butadiene styrene feedstock used in this study. Originality/value This paper introduces a novel approach for predicting the strength of parts produced by MEAM based on the strength of interfaces using polymer weld theory, polymer rheology, temperature history of the interface and the forces applied to the interface. Unlike methods that require experimental strength data as a prediction input, the proposed approach is material and build orientation agnostic once fundamental parameters related to material composition have been determined.


2021 ◽  
pp. 095400832110419
Author(s):  
Lovin K John ◽  
Ramu Murugan ◽  
Sarat Singamneni

The development of fused filament fabrication has extended the range of application of additive manufacturing in various areas of research. However, the mechanical strength of the fused filament fabrication–printed parts were considerably lower than that of parts fabricated by other conventional methods, owing to the observed anisotropic behaviour and formation of voids by weak interlayer diffusion. Intense studies on the effect of design and process parameters of the printed parts on the mechanical properties have been done, whereas studies on the effect of build orientations and raster patterns needs special concern. The main aim of this work is to fabricate parts printed using quasi-isotropic laminate arrangement of rasters, achieved by a raster layup of [45/0/−45/90]s, and to compare their mechanical properties with those of the commonly used 0°/90° (cross) and 45°/−45° (crisscross) raster oriented parts. The quasi-isotropic–oriented samples were observed with improved mechanical behaviour in tensile, compressive, flexural and impact tests compared to the commonly employed raster orientations.


2020 ◽  
Vol 12 (9) ◽  
pp. 3568 ◽  
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi ◽  
Emmanuel Koudoumas ◽  
Achilles Vairis ◽  
...  

Sustainability in additive manufacturing refers mainly to the recycling rate of polymers and composites used in fused filament fabrication (FFF), which nowadays are rapidly increasing in volume and value. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the acrylonitrile-butadiene-styrene (ABS) polymer, which is the second most popular material used in FFF-3D printing. In order to investigate the effect of the recycling courses on the mechanical response of the ABS polymer, an experimental simulation of the recycling process that isolates the thermomechanical treatment from other parameters (i.e., contamination, ageing, etc.) has been performed. To quantify the effect of repeated recycling processes on the mechanic response of the ABS polymer, a wide variety of mechanical tests were conducted on FFF-printed specimens. Regarding this, standard tensile, compression, flexion, impact and micro-hardness tests were performed per recycle repetition. The findings prove that the mechanical response of the recycled ABS polymer is generally improved over the recycling repetitions for a certain number of repetitions. An optimum overall mechanical behavior is found between the third and the fifth repetition, indicating a significant positive impact of the ABS polymer recycling, besides the environmental one.


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2525-2539 ◽  
Author(s):  
Mohd Fadzli Bin Abdollah ◽  
Mohamad Nordin Mohamad Norani ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Hilmi Amiruddin ◽  
Faiz Redza Ramli ◽  
...  

2013 ◽  
Vol 427-429 ◽  
pp. 1315-1318 ◽  
Author(s):  
Yi Bing Li ◽  
Fei Pan

Nowadays, customers are seeking products of high quality and low cost. The use of neural networks in quality control has been a popular research topic over the last decade. An adaptive self-organizing mapping (SOM) neural network algorithm is proposed to overcome the shortages of traditional neural networks in this paper. In order to improve the classification effectiveness of SOM neural network, this paper designs an improved SOM neural network, which combined the SOM and K-means algorithms. The flow of combination of SOM and K-means algorithms was analyzed in this paper. And the case study of cement slide shoe bearing in manufacturing process was also given to illustrate the feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document