scholarly journals Polymer Ligands Derived from Jute Fiber for Heavy Metal Removal from Electroplating Wastewater

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2521
Author(s):  
Md Lutfor Rahman ◽  
Choong Jian Fui ◽  
Tang Xin Ting ◽  
Mohd Sani Sarjadi ◽  
Sazmal E. Arshad ◽  
...  

Industrial operations, domestic and agricultural activities worldwide have had major problems with various contaminants caused by environmental pollution. Heavy metal pollution in wastewater also a prominent issue; therefore, a well built and economical treatment technology is demanded for pollution-free wastewater. The present work emphasized pure cellulose extracted from jute fiber and further modification was performed by a free radical grafting reaction, which resulted in poly(methyl acrylate) (PMA)-grafted cellulose and poly(acrylonitrile)-grafted cellulose. Subsequently, poly(hydroxamic acid) and poly(amidoxime) ligands were prepared from the PMA-grafted cellulose and PAN-grafted cellulose, respectively. An adsorption study was performed using the desired ligands with heavy metals such as copper, cobalt, chromium and nickel ions. The binding capacity (qe) with copper ions for poly(hydroxamic acid) is 352 mg g−1 whereas qe for poly(amidoxime) ligand it was exhibited as 310 mg g−1. Other metal ions (chromium, cobalt and nickel) show significance binding properties at pH 6. The Langmuir and Freundlich isotherm study was also performed. The Freundlich isotherm model showed good correlation coefficients for all metal ions, indicating that multiple-layers adsorption was occurred by the polymer ligands. The reusability was evaluated and the adsorbents can be reused for 7 cycles without significant loss of removal performance. Both ligands showed outstanding metals removal capacity from the industrial wastewater as such 98% of copper can be removed from electroplating wastewater and other metals (cobalt, chromium, nickel and lead) can also be removed up to 90%.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


2019 ◽  
Vol 124 ◽  
pp. 01051
Author(s):  
Y. Smyatskaya ◽  
A. Toumi ◽  
I. Atamaniuk ◽  
Ia. Vladimirov ◽  
F.K. Donaev ◽  
...  

In this paper, it is proposed to use the biomass of microalgae Chlorella sorokiniana as a biosorbent for wastewater treatment, as well as an oral sorbent. Biosorbents are capable of adsorbing both organic and inorganic compounds, including heavy metals. The sorption capacity depends on the type of aquatic plant and microalgae strain. The use of microalgae and aquatic plants as biosorbents for pollutant treatments is discussed in the introduction part. The biomass of microalgae Chlorella sorokiniana was chosen as the object of this study. The cultivation conditions (temperature, light, pH and aeration) and the optimal biomass harvesting parameters are presented. Dehydration of biomass was carried out in two ways: IR-drying and freeze-drying. The obtained samples were tested for the ability of the biomass to extract heavy metal ions (zinc, cadmium, zinc, copper) from standard solutions. The initial concentration of heavy metal ions in the working solutions was 10 mg/l. Results show that the lyophilized samples demonstrated up to 99.9% of heavy metal removal efficiency. The paper also presents the composition of Chlorella sorokiniana biomass, in which up to 40.97–41.87% are proteins. The analysis of the amino-acid composition showed a ratio of essential to non-essential amino-acids higher than 0.8. All the above results confirm the possibility of using microalgae biomass as an oral sorbent and as an additive in the production of functional foods.


2020 ◽  
Vol 15 ◽  
pp. 155892501989895
Author(s):  
Yaewon Park ◽  
Shuang Liu ◽  
Terrence Gardner ◽  
Drake Johnson ◽  
Aaron Keeler ◽  
...  

Manganese-oxidizing fungi support bioremediation through the conversion of manganese ions into manganese oxide deposits that in turn adsorb manganese and other heavy metal ions from the environment. Manganese-oxidizing fungi were immobilized onto nanofiber surfaces to assist remediation of heavy metal–contaminated water. Two fungal isolates, Coniothyrium sp. and Coprinellus sp., from a Superfund site (Lot 86, Farm Unit #1) water treatment system were incubated in the presence of nanofibers. Fungal hyphae had strong association with nanofiber surfaces. Upon fungal attachment to manganese chloride–seeded nanofibers, Coniothyrium sp. catalyzed the conformal deposition of manganese oxide along hyphae and nanofibers, but Coprinellus sp. catalyzed manganese oxide only along its hyphae. Fungi–nanofiber hybrids removed various heavy metals from the water. Heavy metal ions were adsorbed into manganese oxide crystalline structure, possibly by ion exchange with manganese within the manganese oxide. Hybrid materials of fungal hyphae and manganese oxides confined to nanofiber-adsorbed heavy metal ions from water.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 299-305 ◽  
Author(s):  
N. Seelsaen ◽  
R. McLaughlan ◽  
S. Moore ◽  
J.E. Ball ◽  
R.M. Stuetz

Sorption experiments were used to assess the ability of various materials (sand, compost, packing wood, ash, zeolite, recycled glass and Enviro-media) to remove heavy metal contaminants typically found in stormwater. Compost was found to have the best physicochemical properties for sorption of metal ions (Cu, Zn and Pb) compared with sand, packing wood, ash, zeolite and Enviro-media. The compost sorption of these metal ions conformed to the linear form of the Langmuir adsorption equation with the Langmuir constants (qm) for Zn(II) being 11.2 mg/g at pH 5. However, compost was also found to leach a high concentration of dissolved organic carbon (DOC, 4.31 mg/g), compared with the other tested materials. Various combinations of sand, compost and other materials were observed to have excellent heavy metal removal (75–96% of Zn and 90–93% of Cu), with minimal DOC leaching (0.0013–2.43 mg/g). The sorption efficiency of the different Enviro-media mixes showed that a combination of traditional (sand) and alternative materials can be used as an effective medium for the treatment of dissolved metal contaminants commonly found in stormwater. The application of using recycled organic materials and other waste materials (such as recycled glass) also provides added value to the products life cycle.


2009 ◽  
Vol 02 (01) ◽  
pp. 29-43 ◽  
Author(s):  
SVETLA VASSILEVA ◽  
KOLISHKA TSEKOVA ◽  
DARINKA CHRISTOVA ◽  
DESSISLAVA TODOROVA

In this paper the fuzzy logic method improved by adaptive learning of a fuzzy inference system, based on anfis, was used to demonstrate a software analyzer design for parameters evaluation of ternary heavy metal ions removal. The studied process was conducted to investigate metal binding ability of the novel hybrid hydrogel, obtained by entrapping Penicillium cyclopium biomass into chemically cross-linked poly (vinyl alcohol) (PVA) network toward Cu 2+, Co 2+ and Fe 3+ from ternary aqueous solution. The performance of the biosorbent was evaluated by determining the values of heavy metal uptake and heavy metal removal efficiency in the ternary metal mixture. The innovative immobilization technology developed provides an attractive strategy for the developing high-affinity biosorption system for the treatment of wastewater containing heavy metals in low concentration. The obtained results of both — the studied process and software analyzer design and implementation are illustrated and discussed.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Thair Sharif Khayyun ◽  
Ayad Hameed Mseer

Abstract The purpose of this study was to investigate the possibility of the limestone as an adsorbed media and low-cost adsorbent. Batch adsorption studies were conducted to examine the effects of the parameters such as initial metal ion concentration C0, particle size of limestone DL, adsorbent dosage and equilibrium concentration of heavy metal Ce on the removal of the heavy metal (Cu) from synthetic water solution by limestone. The removal efficiency is increased with the increase in the volume of limestone (influenced by the media specific area). It has been noted that the limestone with diameter of 3.75 is the most effective size for removal of copper from synthetic solution. The adsorption data were analyzed by the Langmuir and Freundlich isotherm model. The average values of the empirical constant and adsorption constant (saturation coefficient) for the Langmuir equation were a = 0.022 mg/g and b = 1.46 l/mg, respectively. The average values of the Freundlich adsorption constant and empirical coefficient were Kf = 0.010 mg/g and n = 1.58 l/mg, respectively. It was observed that the Freundlich isotherm model described the adsorption process with high coefficient of determination R2, better than the Langmuir isotherm model and for low initial concentration of heavy metal. Also, when the values of amount of heavy metal removal from solution are predicted by the Freundlich isotherm model, it showed best fits the batch study. It is clear from the results that heavy metal (Cu) removal with the limestone adsorbent appears to be technically feasible and with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document