scholarly journals Effect of Thermal Aging on the Physico-Chemical and Optical Properties of Poly(ester urethane) Elastomers Designed for Passive Damping (Pads) of the Railway

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 192
Author(s):  
Liliana Rosu ◽  
Cristian-Dragos Varganici ◽  
Dan Rosu ◽  
Stefan Oprea

The aim of this study consists of monitoring the effect of thermal aging on the physico-chemical and optical properties of poly(ester urethane) elastomers designed as damping materials for railways. The materials were obtained by polyaddition in two stages in melt, resulting in regular structures. The structural modifications during the thermal aging of the samples were monitored using FTIR, color changes, TGA in non-isothermal and isothermal conditions, DSC and physico-mechanical measurements. The structural regularity of the rigid and flexible segments maintained the good mechanical properties of the structures up to 200 h of thermal aging at the elevated temperatures of 40 °C, 70 °C, 100 °C and 130 °C. It was observed that at 40 °C and low exposure times, changes occur mainly to the carbonyl groups of the soft segments. At higher temperatures and longer exposure times urethane groups were affected. Extended thermal aging led to significant changes in thermo-mechanical and optical properties.

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 490
Author(s):  
Alioune Diop ◽  
Jean–Michel Méot ◽  
Mathieu Léchaudel ◽  
Frédéric Chiroleu ◽  
Nafissatou Diop Ndiaye ◽  
...  

The purpose of this study was to evaluate the impact of the harvest stage, ripening conditions and maturity on color changes of cv. ‘Cogshall’ and cv. ‘Kent’ variety mangoes during drying. A total of four harvests were undertaken, and the fruits were ripened at 20 and 35 °C for five different ripening times at each temperature. At each ripening time, mangoes were dried at 60 °C/30% RH/1.5 m/s for 5 h. A wide physico-chemical and color variability of fresh and dry pulp was created. The relationships according to the L*, H* and C* coordinates were established using mixed covariance regression models in relation to the above pre- and postharvest (preprocess) parameters. According to the L* coordinate results, browning during drying was not affected by the preprocess parameters. However, dried slices from mangoes ripened at 35 °C exhibited better retention of the initial chroma, and had a greater decrease in hue than dried slices from mangoes ripened at 20 °C. However, fresh mango color, successfully managed by the pre- and postharvest conditions, had more impact on dried mango color than the studied parameters. The preprocess parameters were effective levers for improving fresh mango color, and consequently dried mango color.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali A. Alhazime ◽  
Nesreen T. El-Shamy ◽  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

AbstractNanocomposite films of polymethylmethacrylate PMMA with Sn0.75Fe0.25S2 nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Changes in PMMA/Sn0.75Fe0.25S2 nanocomposite (NCP) due to gamma irradiation have been measured. XRD results indicate that the gamma doses of 10–80 kGy cause intermolecular crosslinking that reduces the ordered portion in the NPs. Bonding between the NPs and the host PMMA was confirmed by FTIR. TGA results indicate an enhancement in thermal stability in the NCP films irradiated with doses 20–80 kGy. The optical band gap was reduced from 3.23 to 2.47 eV upon gamma irradiation up to 80 kGy due bonding between the NPs and PMMA which enhanced the amorphous part of the NPs. Finally, the color variation between the blank and irradiated films (ΔE) was determined. Color changes immensely when the PMMA/Sn0.75Fe0.25S2 NCP films are gamma irradiated. Values of ΔE were as much as 31.6 which is an acceptable match in commercial reproduction on printing presses.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 82
Author(s):  
Salmabanu Luhar ◽  
Demetris Nicolaides ◽  
Ismail Luhar

Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries.


RSC Advances ◽  
2015 ◽  
Vol 5 (71) ◽  
pp. 57339-57345 ◽  
Author(s):  
Yooseong Yang ◽  
Youngsuk Jung ◽  
Myung Dong Cho ◽  
Seung Geol Lee ◽  
Soonchul Kwon

Stable optical properties of high transmittance and low yellow index, which are required for a polyimide film as a flexible display substrate could be affected by thermal imidization even in oxidative-stable fluorinated polyimides.


1992 ◽  
Vol 6 ◽  
pp. 172-172
Author(s):  
Mervin Kontrovitz ◽  
Jerry Marie Slack ◽  
Nigel R. Ainsworth ◽  
Richard D. Burnett

Interpretations of geologic history would be enhanced if taphonomic processes, including color changes in shells, were better known. This study deals with the origins and alteration of post-mortem colors in podocopid ostracodes. Modern shells were subjected to elevated temperatures and pressures in reactor vessels with sediments, simulating some burial conditions. Fossil shells from outcrops and boreholes were heated and treated with solvents, in an attempt to identify the coloring agent(s).Modern marine shells are white to pale yellow (Munsell 5Y 8/1 – 2.5Y 8/4). Upon heating at atmosphere, up to about 650°, they became slightly redder, slightly darker, and less color saturated, but never dark (Munsell “value” less than 5). From 650-850° they became yellower and lighter, and above 850° chalky and more yellow. Shells at elevated temperatures and pressures (T-P) with organic-poor sediments and/or iron compounds developed higher color values and lower chromas; they did not become dark. Thus, modern ostracode shells subjected to elevated T-P changed colors, but alone never attained the dark colors seen in many fossils. Only those heated in matured organic-rich sediment and/or crude oils became dark (dark grays, browns, and blacks), like some fossils. Fossil ostracodes from boreholes in Mesozoic and Cenozoic sedimentary rocks showed downhole color differences similar to those from experiments. That is, the colors of fossils are different in hue, value and chroma in different thermal zones and ostracode color appears to be broadly indicative of thermal history.Fossils near igneous intrusions are dark, while the lowered values and chromas of those in metamorphics also are correlatable with paleotemperatures. Reheated dark fossils lightened at about 375-450°, eventually becoming pale yellow to white, apparently indicating that organic coloring agents were driven off. This, and the fact that modern ostracodes develop dark colors only when heated in organic-rich substances, support the contention that the dark color originates from extrinsic organic materials. Pyritized shells become weak red (Munsell 10R 4/4) upon heating; thus, they can be distinguised from those colored by organics.Therefore, ostracode colors appear to be diagnostic of T-P and present the potential for use in paleotemperature reconstructions. A wide range of fossils, including conodonts, phosphatic brachiopods, scolecodonts, and palynomorphs are known to show recognizable and useful evidence of thermal maturation and it is proposed that ostracodes be added to the list.


2018 ◽  
Vol 73 (8) ◽  
pp. 601-609 ◽  
Author(s):  
Bei Wang ◽  
Pei-Zhi Zhang ◽  
Xin Chen ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractA series of guanidinium chloride derivatives have been synthesized by condensation of 1,3-diaminoguanidine monohydrochloride with heteroaromatic formaldehydes in good yields. All compounds were characterized by nuclear magnetic resonances and infrared spectroscopies, and the molecular structures of four compounds were determined by single crystal X-ray diffraction. The optical properties of these guanidinium chloride derivatives with fluoride anions were investigated, showing selective color changes from colorless to yellow or orange, red-shifted in the ultraviolet/visible absorption spectra.


Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 317
Author(s):  
Zachary Brounstein ◽  
Jarrod Ronquillo ◽  
Andrea Labouriau

Eight chromophoric indicators are incorporated into Sylgard 184 to develop sensors that are fabricated either by traditional methods such as casting or by more advanced manufacturing techniques such as 3D printing. The sensors exhibit specific color changes when exposed to acidic species, basic species, or elevated temperatures. Additionally, material properties are investigated to assess the chemical structure, Shore A Hardness, and thermal stability. Comparisons between the casted and 3D printed sensors show that the sensing devices fabricated with the advanced manufacturing technique are more efficient because the color changes are more easily detected.


2004 ◽  
Vol 85 (16) ◽  
pp. 3489-3491 ◽  
Author(s):  
K. B. Nam ◽  
J. Li ◽  
J. Y. Lin ◽  
H. X. Jiang

Clay Minerals ◽  
1986 ◽  
Vol 21 (3) ◽  
pp. 279-292 ◽  
Author(s):  
S. Wild ◽  
M. Arabi ◽  
G. Leng-Ward

AbstractMineralogical analysis of Devonian Red Marl using XRD, TEM, SEM and EDAX showed that it consisted of illite, quartz, and feldspar with minor amounts of chlorite and hematite. Physico-chemical changes in the soil minerals on reaction with lime (calcium hydroxide) from one day up to two years were investigated by these techniques to gain information on the soil-lime reaction mechanism. Significant reaction of the soil minerals and lime was found to occur only at elevated temperatures (50–75°C) in a moist environment. At these temperatures, formation, growth and development of fibrous and foil-like cementitious material was observed. XRD analysis provided no strong evidence for the formation of new phases. TEM analysis and EDAX, however, showed that the newly-formed fibrous and foil-like material consisted of an amorphous calcium silicate aluminate hydrate gel, similar to the gels formed during hydrothermal treatment of lime-silica, but with lower calcium to silicon ratios than previously reported for such gels. The morphological development of the gel suggested that it formed as a result of the progressive breakdown of the clay component in the soil by reaction with the calcium ions from the lime.


Sign in / Sign up

Export Citation Format

Share Document