scholarly journals Responsive Nanostructured Polymer Particles

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 273
Author(s):  
Kang Hee Ku

Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive shape tuning of BCP particles and their applications have received little attention. This review provides a brief overview of recent approaches to developing non-spherical polymer particles from soft evaporative emulsions based on the physical principles affecting both particle shape and inner structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their applications, including the state-of-the-art progress in this field. Finally, the perspectives on current challenges and future directions in this research field are presented, including the development of surfactants with higher reversibility to multiple stimuli and polymers with unique structural functionality, and diversification of polymer architectures.

2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


2021 ◽  
Author(s):  
Daniela M. Zanata ◽  
Maria Isabel Felisberti

Amphiphilic and stimuli-responsive triblock copolymers are an important class of smart materials due to their low critical micellar concentration in solution and capacity of self-assembly into different structures depending on...


2011 ◽  
Vol 2 ◽  
pp. 525-544 ◽  
Author(s):  
Alexey K Shaytan ◽  
Eva-Kathrin Schillinger ◽  
Elena Mena-Osteritz ◽  
Sylvia Schmid ◽  
Pavel G Khalatur ◽  
...  

In this minireview, we survey recent advances in the synthesis, characterization, and modeling of new oligothiophene–oligopeptide hybrids capable of forming nanostructured fibrillar aggregates in solution and on solid substrates. Compounds of this class are promising for applications because their self-assembly and stimuli-responsive properties, provided by the peptide moieties combined with the semiconducting properties of the thiophene blocks, can result in novel opportunities for the design of advanced smart materials. These bio-inspired molecular hybrids are experimentally shown to form stable fibrils as visualized by AFM and TEM. While the experimental evidence alone is not sufficient to reveal the exact molecular organization of the fibrils, theoretical approaches based on quantum chemistry calculations and large-scale atomistic molecular dynamics simulations are attempted in an effort to reveal the structure of the fibrils at the nanoscale. Based on the combined theoretical and experimental analysis, the most likely models of fibril formation and aggregation are suggested.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 54
Author(s):  
Rosa M. Ortuño

The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.


Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


Author(s):  
Yunhui Hao ◽  
Lei Gao ◽  
Xiunan Zhang ◽  
Rongli Wei ◽  
Ting Wang ◽  
...  

Stimuli-responsive molecular crystals are fascinating for their potential as adaptive smart materials. However, achieving one crystal that could respond to multiple stimuli and perform multiple functionalities simultaneously is still challenging....


2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Sameen Maruf ◽  
Fahimeh Saleh ◽  
Gholamreza Haffari

Machine translation (MT) is an important task in natural language processing (NLP), as it automates the translation process and reduces the reliance on human translators. With the resurgence of neural networks, the translation quality surpasses that of the translations obtained using statistical techniques for most language-pairs. Up until a few years ago, almost all of the neural translation models translated sentences independently , without incorporating the wider document-context and inter-dependencies among the sentences. The aim of this survey article is to highlight the major works that have been undertaken in the space of document-level machine translation after the neural revolution, so researchers can recognize the current state and future directions of this field. We provide an organization of the literature based on novelties in modelling and architectures as well as training and decoding strategies. In addition, we cover evaluation strategies that have been introduced to account for the improvements in document MT, including automatic metrics and discourse-targeted test sets. We conclude by presenting possible avenues for future exploration in this research field.


Sign in / Sign up

Export Citation Format

Share Document