scholarly journals Thermal Conductivities of Crosslinked Polyisoprene and Polybutadiene from Molecular Dynamics Simulations

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 315
Author(s):  
Aleksandr Vasilev ◽  
Tommy Lorenz ◽  
Cornelia Breitkopf

For the first time, the thermal conductivities of vulcanized polybutadiene and polyisoprene have been investigated according to their degree of crosslinking. The C-C and C-S-S-C crosslink bridges, which can be obtained via vulcanization processes using peroxides and sulfur, respectively, are considered. The temperature dependence of the thermal conductivity of soft rubber derived from molecular dynamics (MD) simulations is in very good agreement with the experimental results. The contributions of bonded and non-bonded interactions in the MD simulations and their influence on the thermal conductivities of polyisoprene and polybutadiene are presented. The details are discussed in this paper.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1081 ◽  
Author(s):  
Aleksandr Vasilev ◽  
Tommy Lorenz ◽  
Cornelia Breitkopf

The thermal conductivities of untreated polyisoprene and polybutadiene were calculated by molecular dynamics (MD) simulations using a Green-Kubo approach between −10 °C and 50 °C at atmospheric pressure. For comparison, the thermal conductivities of untreated polyisoprene with a molecular weight of 54,000 g/mol and untreated polybutadiene with a molecular weight of 45,000 g/mol were measured by the transient hot wire method in similar conditions. The simulation results of both polymers are in good agreement with the experimental data. We observed that the MD simulations slightly overestimate the thermal conductivity due to the chosen force field description. Details are discussed in the paper.


2012 ◽  
Vol 501 ◽  
pp. 64-69 ◽  
Author(s):  
Yan He ◽  
Yuan Zheng Tang ◽  
Man Ding ◽  
Lian Xiang Ma

Normal thermal conductivity of amorphous and crystalline SiO2nano-films is calculated by nonequilibrium molecular dynamics (NEMD) simulations in the temperature range from 100 to 700K and thicknesses from 2 to 6nm. The calculated temperature and thickness dependences of thermal conductivity are in good agreement with previous literatures. In the same thickness, higher thermal conductivity is obtained for crystalline SiO2nano-films. And more importantly, for amorphous SiO2nano-films, thickness can be any direction of x, y, z-axis without effect on the normal thermal conductivity, for crystalline SiO2nano-films, the different thickness directions obtain different thermal conductivity results. The different results of amorphous and crystalline SiO2nano-films simply show that film thickness and grain morphology will cause different effects on thermal conductivity.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
John C. Duda ◽  
Pamela M. Norris ◽  
Patrick E. Hopkins

We present a new model for predicting thermal boundary conductance in the classical limit. This model takes a different form than those of the traditionally used mismatch theories in the fact that the temperature dependence of thermal boundary conductance is driven by the phononic scattering mechanisms of the materials comprising the interface as opposed to the heat capacities of those materials. The model developed in this work assumes that a phonon on one side of an interface may not scatter at the interface itself but instead scatter with phonons in the adjacent material via the scattering processes intrinsic in the adjacent material. We find that this model is in good agreement with classical molecular dynamics simulations of phonon transport across a Si/Ge interface.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7737
Author(s):  
Aleksandr Vasilev ◽  
Tommy Lorenz ◽  
Vikram G Kamble ◽  
Sven Wießner ◽  
Cornelia Breitkopf

Thermal conductivities of polybutadiene rubbers crosslinked by 2.4 and 2.8 phr of sulfur have been found to be functions of temperature via molecular dynamics (MD) simulations using the Green–Kubo method. From an analysis of the heat flux autocorrelation functions, it has been revealed that the dominant means of heat transport in rubbers is governed by deformations of polymeric chains. Thermal conductivities of rubber samples vulcanized by 2.4 and 2.8 phr of sulfur have been measured by the heat flow meter method between 0 ∘C and 60 ∘C at atmospheric pressure. The temperature dependencies of the thermal conductivities of rubbers and their glass transition temperatures derived from MD simulations are in good agreement with the literature and experimental data. Details are discussed in the paper.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Carolina Abs da Cruz ◽  
Patrice Chantrenne ◽  
Xavier Kleber

Superlattices made by superposing dielectric and metal nanolayers are of great interest as their small size restricts the thermal energy carrier mean free path, decreasing the thermal conductivity and thereby increasing the thermoelectric figure of merit. It is, therefore, essential to predict their thermal conductivity. Potentials for Au and Si are discussed, and the potential of second nearest-neighbor modified embedded atom method (2NN MEAM) is chosen as being the best for simulating heat transfer in Si/Au systems. Full 2NN MEAM Si/Au cross-potential parameterization is developed, and the results are compared with ab initio calculations to test its ability to reproduce local density approximation (LDA) calculations. Volume-constant (NVT) molecular dynamics simulations are performed to deposit Au atoms on an Si substrate by physical vapor deposition, and the results of the intermixing zone are in good agreement with the Cahn and Hilliard theory. Nonequilibrium molecular dynamics simulations are performed for an average temperature of 300 K to determine the Kapitza conductance of Si/Au systems, and the obtained value of 158 MW/m 2 K is in good agreement with the results of Komarov et al. for Au deposited on isotopically pure Si- 28 and natural Si, with values ranging between 133 and 182 MW/m2 K.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zan Wang ◽  
X. Y. Cai ◽  
W. K. Zhao ◽  
H. Wang ◽  
Y. W. Ruan

In this work, we investigate the thermal conductivity properties of Si 1 − x Ge x and Si 0.8 Ge 0 Sn 2 y alloys. The equilibrium molecular dynamics (EMD) is employed to calculate the thermal conductivities of Si 1 − x Ge x alloys when x is different at temperatures ranging from 100 K to 1100 K. Then nonequilibrium molecular dynamics (NEMD) is used to study the relationships between y and the thermal conductivities of Si 0.8 Ge 0.2 Sn 2 y alloys. In this paper, Ge atoms are randomly doped, and tin atoms are doped in three distributing ways: random doping, complete doping, and bridge doping. The results show that the thermal conductivities of Si 1 − x Ge x alloys decrease first, then increase with the rise of x , and reach the lowest value when x changes from 0.4 to 0.5. No matter what the value of x is, the thermal conductivities of Si 1 − x Ge x alloys decrease with the increase of temperature. Thermal conductivities of Si 0.8 Ge 0.2 alloys can be significantly inhibited by doping an appropriate number of Sn atoms. For the random doping model, thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys approach the lowest level when y is 0.10. Whether it is complete doping or bridge doping, thermal conductivities decrease with the increase of the number of doped layers. In addition, in the bridge doping model, both the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms strongly influence thermal conductivities. The thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys are positively associated with the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


Sign in / Sign up

Export Citation Format

Share Document