scholarly journals Effect of Cellulose Nanofibrils on the Properties of Jatropha Oil-Based Waterborne Polyurethane Nanocomposite Film

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1460
Author(s):  
Mohamad Ridzuan Amri ◽  
Chuah Teong Guan ◽  
Syeed Saifulazry Osman Al-Edrus ◽  
Faizah Md Yasin ◽  
Siti Fatahiyah Mohamad

The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young’s modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3740
Author(s):  
Mohamad Ridzuan Amri ◽  
Faizah Md Yasin ◽  
Luqman Chuah Abdullah ◽  
Syeed Saifulazry Osman Al-Edrus ◽  
Siti Fatahiyah Mohamad

This work aims to evaluate the performance of graphene nanoplatelet (GNP) as conductive filler with the presence of 0.5 wt.% cellulose nanofiber (CNF) on the physical, mechanical, conductivity and thermal properties of jatropha oil based waterborne polyurethane. Polyurethane was made from crude jatropha oil using an epoxidation and ring-opening process. 0.5, 1.0, 1.5, 2.0 wt.% GNP and 0.5 wt.% CNF were incorporated using casting method to enhance film performance. Mechanical properties were studied following standard method as stated in ASTM D638-03 Type V. Thermal stability of the nanocomposite system was studied using thermal gravimetric analysis (TGA). Filler interaction and chemical crosslinking was monitored using Fourier-transform infrared spectroscopy (FTIR) and film morphology were observed with field emission scanning electron microscopy (FESEM). Water uptake analysis, water contact angle and conductivity tests are also carried out. The results showed that when the GNP was incorporated at fixed CNF content, it was found to enhance the nanocomposite film, its mechanical, thermal and water behavior properties as supported by morphology and water uptake. Nanocomposite film with 0.5 wt.% GNP shows the highest improvement in term of tensile strength, Young’s modulus, thermal degradation and water behavior. As the GNP loading increases, water uptake of the nanocomposite film was found relatively small (<1%). Contact angle test also indicates that the film is hydrophobic with addition of GNP. The conductivity properties of the nanocomposite film were not enhanced due to electrostatic repulsion force between GNP sheet and hard segment of WBPU. Overall, with addition of GNP, mechanical and thermal properties was greatly enhanced. However, conductivity value was not enhanced as expected due to electrostatic repulsion force. Therefore, ternary nanocomposite system is a suitable candidate for coating application.


2021 ◽  
Author(s):  
Carlos Alejandro Rodríguez-Ramírez ◽  
Alain Dufresne ◽  
Norma Beatriz D'Accorso ◽  
Nancy Garcia

Abstract In this work, from an endemic and non-significant value-added bamboo argentine, nanofibrils (CNFs) of 20 nm in width were obtained. These nanofibrils were chemical modified in surface with three simple steps using a noncommercial low molecular weight polylactic acid. The success of modification was confirmed by FTIR, TGA, DSC and XRD analysis. The modified nanofibrils were taken up for changing surface properties in films based on commercial PLA. The results show that dispersive (γ D/S) component of films increase of 34.7 mN/m to 36.1 mN/m after the addition of modified nanofibrils from 2 to 5% in formulation of the films, comparing with a physical blend. Interesting others result in physical, mechanical, and thermal properties of the nanocomposites, were reported.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


2020 ◽  
Vol 139 ◽  
pp. 109994 ◽  
Author(s):  
Zhuding Dai ◽  
Pingping Jiang ◽  
Wenxue Lou ◽  
Pingbo Zhang ◽  
Yanmin Bao ◽  
...  

2020 ◽  
Vol 41 (12) ◽  
pp. 5182-5194
Author(s):  
Xiaolong Lu ◽  
Pranjal Nautiyal ◽  
Jenniffer Bustillos ◽  
Archana Loganathan ◽  
Cheng Zhang ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 262-268
Author(s):  
Hye Ryun Lee ◽  
Moon Il Kim ◽  
Hye Ryun Na ◽  
Choong Sun Lim ◽  
Bong Kuk Seo

Epoxy/silica composites were prepared using aminopropyl triethoxysilane (APTES)-modified silica nanoparticles in the sol state. Different sizes of silica particles were synthesized and they were applied into the epoxy/silica composites with different compositions. The mechanical and thermal properties of the composites were investigated and compared with those of pristine epoxy composite. The structure and morphology of the modified silica nanoparticles and epoxy/silica composites were analyzed using field emission scanning electron microscope. The flexural modulus and tensile strength of the epoxy/silica composites were investigated by universal test machine (UTM). Also, glass transition and thermal stability were investigated using thermomechanical analyzer (TMA). Sizes of silica particles in sol state were controlled by using different concentration of the accelerator. The tensile strength of epoxy/silica composites containing 20 wt% of 30 nm silica was found to be 37.98 MPa. In addition, the glass transition temperature (Tg) decreased with increasing silica particle sizes.


RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 1956-1965 ◽  
Author(s):  
Xiao Chen ◽  
Haohao Huang ◽  
Xia Shu ◽  
Shumei Liu ◽  
Jianqing Zhao

A novel graphene fluoroxide/polyimide nanocomposite film with a low dielectric constant is prepared with excellent mechanical and thermal properties.


2017 ◽  
Vol 27 (6) ◽  
pp. 1778-1786 ◽  
Author(s):  
Xiangwen Wang ◽  
Yong Fan ◽  
Hao Chen ◽  
Ruixiao Yang ◽  
Wei Zhao

Sign in / Sign up

Export Citation Format

Share Document