scholarly journals Inhibitory Effect of pH-Responsive Nanogel Encapsulating Ginsenoside CK against Lung Cancer

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1784
Author(s):  
Ziyang Xue ◽  
Rongzhan Fu ◽  
Zhiguang Duan ◽  
Lei Chi ◽  
Chenhui Zhu ◽  
...  

Ginsenoside CK is one of the intestinal bacterial metabolites of ginsenoside prototype saponins, such as ginsenoside Rb1, Rb2, Rc, and Rd. Poor water solubility and low bioavailability have limited its application. The nanogel carriers could specifically deliver hydrophobic drugs to cancer cells. Therefore, in this study, a nanogel was constructed by the formation of Schiff base bonds between hydrazide-modified carboxymethyl cellulose (CMC-NH2) and aldehyde-modified β-cyclodextrin (β-CD-CHO). A water-in-oil reverse microemulsion method was utilized to encapsulate ginsenoside CK via the hydrophobic cavity of β-CD. β-CD-CHO with a unique hydrophobic cavity carried out efficient encapsulation of CK, and the drug loading and encapsulation efficiency were 16.4% and 70.9%, respectively. The drug release of CK-loaded nanogels (CK-Ngs) in vitro was investigated in different pH environments, and the results showed that the cumulative release rate at pH 5.8 was 85.5% after 140 h. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) toxicity analysis indicated that the survival rates of A549 cells in CK-Ngs at 96 h was 2.98% compared to that of CK (11.34%). In vivo animal experiments exhibited that the inhibitory rates of CK-Ngs against tumor volume was 73.8%, which was higher than that of CK (66.1%). Collectively, the pH-responsive nanogel prepared herein could be considered as a potential nanocarrier for CK to improve its antitumor effects against lung cancer.

2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Jing Chang ◽  
Zhe Yang ◽  
Junfeng Li ◽  
Yufen Jin ◽  
Yihang Gao ◽  
...  

Background: Doxorubicin (DOX) has antitumor effects mediated by cell viability inhibition and by inducing cellular apoptosis. However, it has limited use in clinical applications due to various factors such as hydrophobicity, dose-dependent toxicity effects on normal tissues, short cycle retention time, and low targeting ability. This study aims at enhancing hydrophilicity of DOX to restrict its toxic effects to within or around the tumor sites and also to improve its targeting ability to enhance antitumor efficiency. Methods: Micelles composed of biodegradable poly (ethylene glycol)-poly (lactic acid) copolymers (PEG-PLA) were employed to deliver DOX via a self-assembly method and were coupled to VEGF antibodies. The morphology, size, and physical stability of PEG-PLA-DOX targeting VEGF micelles (VEGF-PEG-PLA-DOX micelles) were assessed. Then, the release ability of DOX from these micelles was monitored, and their drug loading capacity was calculated. MTT assay revealed the in vitro antitumor effect of VEGF-PEG-PLA-DOX micelles. Moreover, ROS release was measured to evaluate apoptotic effects of these nanoparticle micelles. In vivo therapeutic efficiencies of VEGF-PEG-PLA-DOX micelles on a lung cancer nude mouse model was evaluated. Results: DOX-loaded micelles were obtained with a drug loading capacity of 12.2% and were monodisperse with 220 nm average diameter and a controlled in vitro DOX release for extended periods. In addition, VEGF-PEG-PLA-DOX micelles displayed a larger cell viability inhibitory effect as measured via MTT assays and greater cell apoptosis induction through in vitro ROS levels compared with PEG-PLA-DOX micelles or free DOX. Furthermore, VEGF-PEG-PLA-DOX micelles could improve in vivo antitumor effects of DOX by reducing tumor volume and weight. Conclusions: VEGF-PEG-PLA-DOX micelles displayed a larger anti-tumor effect both in in vitro A549 cells and in an in vivo lung cancer nude mouse model compared with PEG-PLA-DOX micelles or free DOX, and hence they have potential clinical applications in human lung cancer therapy.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Chieh-Shan Wu ◽  
Yun-Ju Chen ◽  
Jeremy J. W. Chen ◽  
Jeng-Jer Shieh ◽  
Chia-Hsin Huang ◽  
...  

Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC) cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.


2022 ◽  
Vol 12 (4) ◽  
pp. 690-694
Author(s):  
Wei Zhang ◽  
Yi Chen ◽  
Bin Wang ◽  
Xueren Feng ◽  
Lijuan Zhang ◽  
...  

Lung cancer is a worldwide issue which account for the death of thousands every year. Paclitaxel (PTX) as the first line chemotherapy drug to treat lung cancer, its clinical applications is largely limited by its poor solubility. The facile preparation of pharmaceutical formulations to increase the solubility as well as targetability of PTX is of vital importance in lung cancer treatment. Herein, we introduced a facile method to prepare PTX nano-suspensions (NSs), which have high drug loading as well as well-dispersed particle size. The in vitro cell experiments revealed its capability to enhance the drug accumulation in A549 cells than free PTX. Moreover, in vivo animal assay suggested its better tumor accumulation and antitumor efficacy than PTX injection (Taxol).


2020 ◽  
Vol 59 (1) ◽  
pp. 11-20
Author(s):  
Cong Fang ◽  
Yahui Liu ◽  
Lanying Chen ◽  
Yingying Luo ◽  
Yaru Cui ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhicheng Wang ◽  
Yumin Li ◽  
Tong Zhang ◽  
Hongxia Li ◽  
Zhao Yang ◽  
...  

Insufficient transport of therapeutic cargo into tumor bed is a bottleneck in cancer nanomedicine. Block copolymers are promising carriers with smaller particle size by ratio modification. Here, we constructed cisplatin nanoparticles with sizes ranging from 8 to 40 nm to study the permeability and therapy of Lewis lung carcinoma. We synthesized methoxypoly(ethylene glycol)2000-block poly(L-glutamic acid sodium salt)1979 loading cisplatin through complexation reaction. The cisplatin nanomedicine has high drug loading and encapsulation efficiency. In vitro data demonstrated that cisplatin nanoparticles had equivalent growth-inhibiting effects on Lewis lung carcinoma cells compared to free cisplatin. In vivo evidences showed cisplatin nanoparticles had superior antitumor effects on the Lewis lung carcinoma mouse model with no obvious side effects. All results indicated that optimizing the ratio of block copolymers to obtain smaller sized nanomedicine could act as a promising strategy for overcoming the inadequate accumulation in poorly vascularized tumors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2196 ◽  
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.


2020 ◽  
Vol 52 (9) ◽  
pp. 1007-1015
Author(s):  
Zhe Zhang ◽  
Li Nong ◽  
Menglei Chen ◽  
Xiaoli Gu ◽  
Weiwei Zhao ◽  
...  

Abstract Vasculogenic mimicry (VM) refers to a new tubular network of the blood supply system with abundant extracellular matrix. VM is similar to capillaries but does not involve endothelial cells. As a traditional herbal medicine commonly used in China, baicalein possesses anti-inflammatory and lipoxygenase activities. However, the effects of baicalein on the process of VM formation in non-small cell lung cancer (NSCLC) and the underlying mechanisms have remained poorly understood. In this study, baicalein was found to inhibit the viability and motility of A549 cells and induced the breakage of the cytoskeletal actin filament network. In addition, baicalein significantly decreased the formation of VM and downregulated the expressions of VM-associated factors, such as VE-cadherin, EphA2, MMP14, MMP2, MMP9, PI3K and LAMC2, similar to the effects of ROCK inhibitors. Indeed, baicalein inhibited RhoA/ROCK expression in vitro and in vivo, suggesting the underlying mechanisms of reduced VM formation. Collectively, baicalein suppressed the formation of VM in NSCLC by targeting the RhoA/ROCK signaling pathway, indicating that baicalein might serve as an emerging drug for NSCLC.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
XinGang Lu ◽  
Liu Yang ◽  
ChengHua Lu ◽  
ZhenYu Xu ◽  
HongFu Qiu ◽  
...  

Nowadays, chemotherapy is still the main effective treatment for cancer. Herb prescriptions containingPogostemon cablin Benth(also known as “Guang-Huo-Xiang”) have been widely used in Chinese medicine today. In our research, we found that patchouli alcohol, a compound isolated from the oil ofPogostemon cablin Benth, exerted antitumor ability against human lung cancer A549 cells ability bothin vitroandin vivo. MTT assay was used to assess cell viability. Hoechst 33342 staining and TUNEL cover glass staining provided the visual evidence of apoptosis. Caspase activity measurement showed that patchouli alcohol activated caspase 9 and caspase 3 of mitochondria-mediated apoptosis. Consistently, patchouli alcohol inhibited the xenograft tumorin vivo. Further investigation of the underlying molecular mechanism showed that MAPK and EGFR pathway might contribute to the antitumor effect of patchouli alcohol. Our study proved that patchouli alcohol might be able to serve as a novel antitumor compound in the clinical treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document