scholarly journals A Comparative Study on Suitability of Model-Free and Model-Fitting Kinetic Methods to Non-Isothermal Degradation of Lignocellulosic Materials

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2504
Author(s):  
Hamayoun Mahmood ◽  
Ahmad Shakeel ◽  
Ammar Abdullah ◽  
Muhammad Khan ◽  
Muhammad Moniruzzaman

The thermal kinetic modeling is crucial for development of sustainable processes where lignocellulosic fuels are a part of chemical system and their thermal degradation eventuates. In this paper, thermal decomposition of three lignocellulosic materials (bagasse, rice husk, and wheat straw) was obtained by the thermogravimetric (TG) technique and kinetics was analyzed by both model-fitting and isoconversional (model-free) methods to compare their effectiveness. Two models selected from each class include Arrhenius and Coats–Redfern (model-fitting), and Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) (model-free). The formal model-fitting approach simulating the thermal decomposition of solids by assuming a fixed mechanism was found to be unduly facile. However, activation energy (E) values calculated from two model-fitting techniques were considerably different from each other with a percentage difference in the range of 1.36% to 7.65%. Particularly, both model-fitting methods predicted different reaction mechanism for thermal disintegration of lignocellulosic materials (two-dimensional diffusion (D2) by Arrhenius and one-dimensional diffusion (D1) by Coat–Redfern method). Conversely, the model-free routine offers a transformation of mechanism and activation energy values throughout reaction and is, therefore, more authentic to illustrate the complexity of thermal disintegration of lignocellulosic particles. Based on the model-free kinetic analysis, the lignocellulosic materials may be devised in following order of activation energy: rice husk > bagasse > wheat straw, by both KAS and FWO methods with a percentage difference no more than 0.84% for fractional conversion up to 0.7. Isoconversional approach could be recommended as more realistic and precise for modeling non-isothermal kinetics of lignocellulosic residues compared to model-fitting approach.

2019 ◽  
Vol 38 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Ghulam Ali ◽  
Jan Nisar ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
Mazhar Abbas ◽  
...  

Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin−1, 10°Cmin−1, 15°Cmin−1 and 20°Cmin−1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats–Redfern) and model free methods (Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats–Redfern, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman models were found in the ranges 105–148.48 kJmol−1, 99.41–140.52 kJmol−1, 103.67–149.15 kJmol−1 and 99.93–141.25 kJmol−1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.


2020 ◽  
Vol 15 (1) ◽  
pp. 253-263
Author(s):  
Sharmeela Matali ◽  
Norazah Abd Rahman ◽  
Siti Shawalliah Idris ◽  
Nurhafizah Yaacob

Torrefaction is a thermal conversion method extensively used for improving the properties of biomass. Usually this process is conducted within a temperature range of 200-300 °C under an inert atmosphere with residence time up to 60 minutes. This work aimed to study the kinetic of thermal degradation of oil palm frond pellet (OPFP) as solid biofuel for bioenergy production. The kinetics of OPFP during torrefaction was studied using frequently used iso-conversional model fitting (Coats-Redfern (CR)) and integral model-free (Kissinger-Akahira-Sunose (KAS)) methods in order to provide effective apparent activation energy as a function of conversion. The thermal degradation experiments were conducted at four heating rates of 5, 10, 15, and 20 °C/min in a thermogravimetric analyzer (TGA) under non-oxidative atmosphere. The results revealed that thermal decomposition kinetics of OPFP during torrefaction is significantly influenced by the severity of torrefaction temperature. Via Coats-Redfern method, torrefaction degradation reaction mechanism follows that of reaction order with n = 1. The activation energy values were 239.03 kJ/mol and 109.28 kJ/mol based on KAS and CR models, respectively. Copyright © 2020 BCREC Group. All rights reserved 


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Trung Toan Nguyen ◽  
Duc Nhan Phan ◽  
Van Thom Do ◽  
Hoang Nam Nguyen

This work investigates kinetics and thermal decomposition behaviors of pentaerythritol tetranitrate (PETN) and two polymer-bonded explosive (PBX) samples created from PETN (named as PBX-PN-85 and PBX-PP-85) using the vacuum stability test (VST) and thermogravimetry (TG/DTG) techniques. Both model-free (isoconversional) and model-fitting methods were applied to determine the kinetic parameters of the thermal decomposition. It was found that kinetic parameters obtained by the modified Kissinger–Akahira–Sunose method (using non-isothermal TG/DTG data) were close to those obtained by the isoconversional and model-fitting methods that use isothermal VST data. The activation energy values of thermal decomposition reactions were 125.6–137.1, 137.3–144.9, and 143.9–152.4 kJ·mol−1 for PBX-PN-85, PETN, and PBX-PP-85, respectively. The results demonstrate the negative effect of the nitrocellulose-based binder in reducing the thermal stability of single PETN, while the polystyrene-based binder seemingly shows no adverse influence on the thermal decomposition of PETN in our presented PBX compositions.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1958-1979
Author(s):  
Bingtao Hu ◽  
Zhaolin Gu ◽  
Junwei Su ◽  
Zhijian Li

Wheat straw produced annually in the Shaanxi Guanzhong region is a potential biomass feedstock for the production of transportation fuels and specialized chemicals through combustion, pyrolysis, or gasification. In this work, the pyrolytic characteristics, evolved gas products, and kinetics of Guanzhong wheat straw and its components were first investigated with a thermogravimetry-Fourier infrared spectroscopy (TG-FTIR) system. A comparative kinetic study was conducted using different model-free methods of Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Kissinger, and the Coats-Redfern methods. The main pyrolysis products identified by FTIR include H2O, CH4, CO2, and CO as well as aromatics, acids, ketones, and aldehydes. Kinetic results showed that the pyrolytic apparent activation energy of the straw is approximately 200 kJ/mol obtained via FWO and KAS methods at the conversion range of 0.4 to 0.75, which was 30 kJ/mol higher than the value 171.1 kJ/mol obtained by the Kissinger method. The apparent activation energy of cellulose in its main pyrolysis region is 135.5 kJ/mol and is about three times larger than that of hemicellulose (49.5 kJ/mol). The apparent activation energy of lignin at the temperature range of 45 to 116 °C was 34.5 kJ/mol, while that value at the temperature range of 120 to 252 °C was 6.64 kJ/mol.


2011 ◽  
Vol 76 (7) ◽  
pp. 1015-1026 ◽  
Author(s):  
Karuvanthodi Muraleedharan ◽  
Labeeb Pasha

The thermal decomposition of potassium titanium oxalate (PTO) was studied using non-isothermal thermogravimetry at different heating rates under a nitrogen atmosphere. The thermal decomposition of PTO proceeds mainly through five stages forming potassium titanate. The theoretical and experimental mass loss data are in good agreement for all stages of the thermal decomposition of PTO. The third thermal decomposition stage of PTO, the combined elimination of carbon monoxide and carbon dioxide, were subjected to kinetic analyses both by the method of model fitting and by the model free approach, which is based on the isoconversional principle. The model free analyses showed that the combined elimination of carbon monoxide and carbon dioxide and formation of final titanate in the thermal decomposition of PTO proceeds through a single step with an activation energy value of about 315 kJ mol-1.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
N. Kanagathara ◽  
M. K. Marchewka ◽  
K. Pawlus ◽  
S. Gunasekaran ◽  
G. Anbalagan

Crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MBDH crystallizes in the monoclinic system (C2/c). Thermal decomposition behavior of MBDH has been studied by thermogravimetric analysis at three different heating rates: 10, 15, and 20°C/min. Nonisothermal studies of MBDH revealed that the decomposition occurs in three stages. The values of effective activation energy (Ea) and preexponential factor (ln A) of each stage of thermal decomposition for all heating rates were calculated by model free methods: Arrhenius, Flynn-Wall, Friedman, Kissinger, and Kim-Park methods. A significant variation of effective activation energy (Ea) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and Ea values was established (compensation effect). Avrami-Erofeev model (A3), contracting cylinder (R2), and Avrami-Erofeev model (A4) were accepted by stages I, II, and III, respectively. DSC has also been performed.


2018 ◽  
Vol 28 ◽  
pp. 75-89
Author(s):  
Hamid Reza Javadinejad ◽  
Sayed Ahmad Hosseini ◽  
Mohsen Saboktakin Rizi ◽  
Eiman Aghababaei ◽  
Hossein Naseri

The kinetic study for the synthesis of Fluorapatite has been done using the thermogravimetric technique under non-isothermal conditions and at four heating rates of 5, 10, 15 and 20 °C. Both model free and model-fitting methods were used to investigate kinetic parameters. Calcium oxide, phosphorus pentoxide and calcium fluoride were used as the precursor materials. The activation energy values were calculated through model-fitting and isoconversional methods and were used to predict the reaction model and pre-exponential factor. In this case several techniques were considered such as master plots and compensation effects. The results indicated that the reaction mechanism was chemically controlled with second and third order reaction models in the whole range of conversion which the activation energy varied from 25 to 43 kJ/mol.


2014 ◽  
Vol 881-883 ◽  
pp. 726-733
Author(s):  
Gui Ying Xu ◽  
Jiang Bo Wang ◽  
Ling Ping Guo ◽  
Guo Gang Sun

TG analysis was used to investigate the thermal decomposition of switchgrass, which is a potential gasification feedstock. 10 mg switchgrass sample with the particles between 0.45 and 0.70 mm was linearly heated to 873 K at heating rates of 10, 20, 30 K/min, respectively, under high-purity nitrogen. The Kissinger method and three isoconversional methods including Friedman, Flynn-wall-Ozawa, Vyazovkin and Lenikeocink methods were used to estimate the apparent activation energy of switchgrass. With the three isoconversional methods, it can be concluded that the activation energy increases with increasing conversion. The four model free methods reveal activation energies in the range of 70-460 kJ/mol. These activation energy values provide the basic data for the thermo-chemical utilization of the switchgrass.


Sign in / Sign up

Export Citation Format

Share Document