Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models

2019 ◽  
Vol 38 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Ghulam Ali ◽  
Jan Nisar ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
Mazhar Abbas ◽  
...  

Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin−1, 10°Cmin−1, 15°Cmin−1 and 20°Cmin−1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats–Redfern) and model free methods (Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats–Redfern, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman models were found in the ranges 105–148.48 kJmol−1, 99.41–140.52 kJmol−1, 103.67–149.15 kJmol−1 and 99.93–141.25 kJmol−1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.

2018 ◽  
Vol 28 ◽  
pp. 75-89
Author(s):  
Hamid Reza Javadinejad ◽  
Sayed Ahmad Hosseini ◽  
Mohsen Saboktakin Rizi ◽  
Eiman Aghababaei ◽  
Hossein Naseri

The kinetic study for the synthesis of Fluorapatite has been done using the thermogravimetric technique under non-isothermal conditions and at four heating rates of 5, 10, 15 and 20 °C. Both model free and model-fitting methods were used to investigate kinetic parameters. Calcium oxide, phosphorus pentoxide and calcium fluoride were used as the precursor materials. The activation energy values were calculated through model-fitting and isoconversional methods and were used to predict the reaction model and pre-exponential factor. In this case several techniques were considered such as master plots and compensation effects. The results indicated that the reaction mechanism was chemically controlled with second and third order reaction models in the whole range of conversion which the activation energy varied from 25 to 43 kJ/mol.


2016 ◽  
Vol 36 (9) ◽  
pp. 917-931 ◽  
Author(s):  
Gaurav Madhu ◽  
Dev K. Mandal ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai

Abstract The effect of adding poly(L-lactic acid) (PLLA) with and without a pro-oxidant additive cobalt stearate (CoSt) and compatibilizer maleic anhydride grafted polyethylene (MA-g-PE) on the thermal degradation and stability of high-density polyethylene (HDPE) films was analyzed using thermogravimetric analysis (TGA). The kinetic parameters [i.e. activation energy (Ea), order of reaction (n), and frequency factor ln(A)] of the samples were studied over a temperature range of 25°C–600°C at four heating rates (i.e. 5, 10, 15, and 20°C/min) through model-free techniques (e.g. Friedman, second Kissinger, and Flynn-Wall-Ozawa) and model-fitting techniques (e.g. Freeman-Carroll and Kim-Park). The value of Ea for neat HDPE was found to be much higher than PLLA; for the HDPE/PLLA blend, it was nearer to that of HDPE. An increase in the activation energy of 80/20 (HDPE/PLLA) blend was noticed by the addition of MA-g-PE. The TGA data and degradation kinetics were also used to predict the lifetime of the film samples. The lifetime of HDPE was found to decrease with the increase in the concentration of CoSt, thereby revealing its pro-oxidative ability. Minimum lifetime was noted for the HDPE/PLLA (80/20) sample blended with CoSt, which increased slightly in the presence of MA-g-PE. Studies indicated that the thermal degradation behavior and lifetime of the investigated film samples depends not only on the fractions of their constituents but also on the heating rates and calculation technique.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Qiuli Zhang ◽  
Min Luo ◽  
Long Yan ◽  
Aiwu Yang ◽  
Xiangrong Hui

Coal SJC, coal WJG, coal ZJM, and coal HCG were selected to investigate the pyrolysis kinetics of northern Shaanxi coals. TG and DSC experiments of four coals were carried out with a synchronous thermal analyzer at heating rates 5, 10, 15, and 20 C/min, respectively. The pyrolysis characteristics were described by thermogravimetric data, and the kinetic parameters were calculated by Flynn–Wall–Ozawa (FWO), Kissinger, general integration, and MacCallum–Tanner methods. The results show that coal SJC, coal ZJM, and coal HCG all conform to the reaction series equation, the thermal decomposition reaction rate is controlled by chemical reaction, and coal WJG conforms to Avrami–Erofeev equation. The activation energies of the four coals are 177.53 kJ/mol, 200.34 kJ/mol, 158.59 kJ/mol, and 240.47 kJ/mol, respectively.


2020 ◽  
Vol 11 (4) ◽  
pp. 11357-11379

A kinetic study of the pyrolysis process of raw Eriobotrya japonica Lindl. Kernels (RLK) was investigated using a thermogravimetric analyzer. The weight loss was measured in a nitrogen atmosphere. The samples were heated over a range of temperature from 298 K to 873 K with four different heating rates of 5, 10, 15, 20 K min-1. Mass loss (TGA) and derivative mass loss (DTG) measurements indicate that the increase in heating rate has no noticeable effect on the thermal degradation of the RLK. The results obtained from the thermal decomposition process indicate that there are three main stages such as dehydration, active, and passive pyrolysis. TGA curves indicate that active pyrolysis of RLK is between 160 and 450 °C. In this interval, a shoulder followed by a peak exists on the DTG plots. The shoulder corresponds to the decomposition of hemicelluloses, the first peak to that of cellulose. Lignin decomposes through all temperature range. The kinetic parameters such as activation energy and pre-exponential factor were obtained for two degradation steps by isoconversional model-free methods proposed by FWO, KAS, Kissinger, Tang, MKN, and FR, with degradation mode being: f(α)=(1-α)n with n = 1 for FR and g(α)=-Ln(1- α) for the other methods. The activation energy and pre-exponential factor obtained by the Kissinger method are 173 kJ/mol and 1.9×1016 min-1. While for free model methods, the average kinetic parameters calculated are 172-248 kJ.mol-1 and 5,30×1020 for integral methods (FWO, KAS, Tang and MKN) and 190-271 kJ.mol-1 and 1.77×1022 min-1 for differential Fr method. The activation energy decreases in the final stages of the process. The energy required for hemicellulose degradation is lower than that of cellulose. The most probable reaction functions have thus been determined for these two stages by Coats-Redfern and Criado method, leading to greatly improved calculation performance over the entire conversion range. The reaction, second-order F2, describes the pyrolysis reaction models of RLK. With the Arrhenius parameters obtained from the fitting model of CR, we attempt to reconstruct the temperature-dependent mass conversion curves and have resulted in generally acceptable results. Based on the Arrhenius parameter values obtained by Kissinger equation, the changes in entropy, enthalpy and Gibbs free energy, and lifetime predictions have been estimated concerning the thermal degradation processes of RLK.


2019 ◽  
Vol 38 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Zhitong Yao ◽  
Shaoqi Yu ◽  
Weiping Su ◽  
Weihong Wu ◽  
Junhong Tang ◽  
...  

Thermal treatment offers advantages of significant volume reduction and energy recovery for the polyurethane foam from waste refrigerators. In this work, the pyrolysis kinetics of polyurethane foam was investigated using the model-fitting, model-free and distributed activation energy model methods. The thermogravimetric analysis indicated that the polyurethane foam decomposition could be divided into three stages with temperatures of 38°C–400°C, 400°C–550°C and 550°C–1000°C. Peak temperatures for the major decomposition stage (<400°C) were determined as 324°C, 342°C and 344°C for heating rates of 5, 15 and 25 K min-1, respectively. The activation energy ( Eα) from the Friedman, Flynn–Wall–Ozawa and Tang methods increased with degree of conversion ( α) in the range of 0.05 to 0.5. The coefficients from the Flynn–Wall–Ozawa method were larger and the resulted Eα values fell into the range of 163.980–328.190 kJ mol-1 with an average of 206.099 kJ mol-1. For the Coats–Redfern method, the diffusion models offered higher coefficients, but the E values were smaller than that from the Flynn–Wall–Ozawa method. The Eα values derived from the distributed activation energy model method were determined as 163.536–334.231 kJ mol-1, with an average of 206.799 kJ mol-1. The peak of activation energy distribution curve was located at 205.929 kJ mol-1, consistent with the thermogravimetric results. The Flynn–Wall–Ozawa and distributed activation energy model methods were more reliable for describing the polyurethane foam pyrolysis process.


2021 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Ayokunle O. Balogun ◽  
Adekunle A. Adeleke ◽  
Peter P. Ikubanni ◽  
Samuel O. Adegoke ◽  
Abdulbaset M. Alayat ◽  
...  

This study provides an extensive investigation on the kinetics, combustion characteristics, and thermodynamic parameters of the thermal degradation of guinea grass (Megathyrsus maximus) in N2-pyrolytic and oxidative atmospheres. A model-fitting technique and three different iso-conversional techniques were used to investigate the kinetics of the thermal process, after which an analysis of the combustion characteristics and thermodynamic parameters was undertaken. Prior to this, experiments on the physico-chemical characterization, thermogravimetric, and spectroscopic analyses were carried out to provide insight into the compositional structure of the guinea grass. The volatile matter, fixed carbon, and total lignin contents by mass were 73.0%, 16.1%, and 21.5%, respectively, while the higher heating value was 15.46 MJ/kg. The cellulose crystallinity index, determined by XRD, was 0.43. The conversion of the GG in air proceeded at a relatively much higher rate as the maximum mass-loss rate peak in a 20 K/min read was −23.1 and −12.3%/min for the oxidative and the pyrolytic, respectively. The kinetics investigation revealed three distinctive stages of decomposition with their corresponding values of activation energy. The average values of activation energy (FWO) at the latter stages of decomposition in the pyrolytic processes (165 kJ/mol) were higher than those in the oxidative processes (125 kJ/mol)—an indication of the distinctive phenomenon at this stage of the reaction. The Coats–Redfern kinetic model revealed that chemical reactions and diffusional models played a predominant role in the thermal decomposition process of the GG. This study showed that the thermodynamic parameters varied with the conversion ratio, and the combustion performance increased with the heating rates. The use of GG as an energy feedstock is recommended based on the findings from this work.


2020 ◽  
Vol 15 (1) ◽  
pp. 253-263
Author(s):  
Sharmeela Matali ◽  
Norazah Abd Rahman ◽  
Siti Shawalliah Idris ◽  
Nurhafizah Yaacob

Torrefaction is a thermal conversion method extensively used for improving the properties of biomass. Usually this process is conducted within a temperature range of 200-300 °C under an inert atmosphere with residence time up to 60 minutes. This work aimed to study the kinetic of thermal degradation of oil palm frond pellet (OPFP) as solid biofuel for bioenergy production. The kinetics of OPFP during torrefaction was studied using frequently used iso-conversional model fitting (Coats-Redfern (CR)) and integral model-free (Kissinger-Akahira-Sunose (KAS)) methods in order to provide effective apparent activation energy as a function of conversion. The thermal degradation experiments were conducted at four heating rates of 5, 10, 15, and 20 °C/min in a thermogravimetric analyzer (TGA) under non-oxidative atmosphere. The results revealed that thermal decomposition kinetics of OPFP during torrefaction is significantly influenced by the severity of torrefaction temperature. Via Coats-Redfern method, torrefaction degradation reaction mechanism follows that of reaction order with n = 1. The activation energy values were 239.03 kJ/mol and 109.28 kJ/mol based on KAS and CR models, respectively. Copyright © 2020 BCREC Group. All rights reserved 


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5595
Author(s):  
Ang Li ◽  
Wenlong Zhang ◽  
Juan Zhang ◽  
Yanming Ding ◽  
Ru Zhou

Extruded polystyrene (XPS) is a thermal insulation material extensively applied in building systems. It has attracted much attention because of outstanding thermal insulation performance, obvious flammability shortcoming and potential energy utilization. To establish the reaction mechanism of XPS’s pyrolysis, thermogravimetric experiments were performed at different heating rates in nitrogen, and multiple methods were employed to analyze the major kinetics of pyrolysis. More accurate kinetic parameters of XPS were estimated by four common model-free methods. Then, three model-fitting methods (including the Coats-Redfern, the iterative procedure and masterplots method) were used to establish the kinetic model. Since the kinetic models established by the above three model-fitting methods were not completely consistent based on different approximations, considering the effect of different approximates on the model, the reaction mechanism was further established by comparing the conversion rate based on the model-fitting methods corresponding to the possible reaction mechanisms. Finally, the accuracy of the above model-fitting methods and Particle Swarm Optimization (PSO) algorithm were compared. Results showed that the reaction function g(α) = (1 − α)−1 − 1 might be the most suitable to characterize the pyrolysis of XPS. The conversion rate calculated by masterplots and PSO methods could provide the best agreement with the experimental data.


2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 968 ◽  
Author(s):  
Abdenacer Benhammada ◽  
Djalal Trache ◽  
Mohamed Kesraoui ◽  
Salim Chelouche

In this study, carbon mesospheres (CMS) and iron oxide nanoparticles decorated on carbon mesospheres (Fe2O3-CMS) were effectively synthesized by a direct and simple hydrothermal approach. α-Fe2O3 nanoparticles have been successfully dispersed in situ on a CMS surface. The nanoparticles obtained have been characterized by employing different analytical techniques encompassing Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The produced carbon mesospheres, mostly spherical in shape, exhibited an average size of 334.5 nm, whereas that of Fe2O3 supported on CMS is at around 80 nm. The catalytic effect of the nanocatalyst on the thermal behavior of cellulose nitrate (NC) was investigated by utilizing differential scanning calorimetry (DSC). The determination of kinetic parameters has been carried out using four isoconversional kinetic methods based on DSC data obtained at various heating rates. It is demonstrated that Fe2O3-CMS have a minor influence on the decomposition temperature of NC, while a noticeable diminution of the activation energy is acquired. In contrast, pure CMS have a slight stabilizing effect with an increase of apparent activation energy. Furthermore, the decomposition reaction mechanism of NC is affected by the introduction of the nano-catalyst. Lastly, we can infer that Fe2O3-CMS may be securely employed as an effective catalyst for the thermal decomposition of NC.


Sign in / Sign up

Export Citation Format

Share Document