Structure and Performance of PP Porous Membrane Prepared with Adipic Acid and NA-40 as Nucleating Agent via TIPS

2016 ◽  
Vol 848 ◽  
pp. 733-737
Author(s):  
Hui Xia Xuan ◽  
Chun Ju He

Polypropylene (PP) membranes were respectively prepared using adipic acid (APA) and Sorbitol (NA-40) as nucleating agent via thermally induced phase separation (TIPS) method. The effects of nucleating agent content and cooling temperature on the structure and performance of membrane were investigated using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). WAXD spectrogram indicates that three kinds of α, β and γ-form crystal were formed in this preparation process and the relative content of β-form crystal in membrane prepared by NA-40 system is higher than that of membrane formed by adipic acid. SEM images show that porous structure and cellular structure were observed on the surface and cross-section of membrane. The water flux, tensile strength and elongation increase with the addition of nucleating agent content and decrease with cooling temperature rising. This paper aims to choose proper nucleating agent NA-40 and coagulation temperature to improve the properties of PP membranes.

2016 ◽  
Vol 848 ◽  
pp. 726-732 ◽  
Author(s):  
Rong Liu ◽  
Yan Wang ◽  
Jing Zhu ◽  
Zu Ming Hu ◽  
Jun Rong Yu

The effects of Modified NanoSiO2 Agents on the morphology and performance of ultra-high-molecular weight polyethylene (UHMWPE) microporous membranes via thermally induced phase separation were investigated in this work. The NanoSiO2 was surface modified by silane coupling agent KH570 (KH570-NanoSiO2). Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) were performed to obtain crystallization of UHMWPE/white oil/ KH570-NanoSiO2 doped system. The morphology and performance of the prepared UHMWPE microporous membranes were characterized with scanning electron microscopy (SEM) and microfiltration experiments. The results showed that the morphology of UHMWPE membrane could be disturbed by KH570-NanoSiO2. Porosity and the rejection of Bovine serum albumin (BSA) of the blend membrane increased with increasing concentration of Modified NanoSiO2, while the water flux slightly decreased.


2016 ◽  
Vol 36 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Bai Xue ◽  
Dan Guo ◽  
Jianjun Bao

Abstract In this paper, high-heat-resistant polymeric composite products were prepared via the traditional melt blending process by incorporating N,N′-bis(benzoyl) adipic acid dihydrazide (BAAD) into poly(l-lactic acid) (PLLA), which acted as an organic nucleating agent. The heat distortion temperature (HDT) of the PLLA/BAAD composite samples was measured by an HDT apparatus, and a high value of 96.2°C was achieved at a BAAD loading fraction of 0.5 wt.%, whereas, at the same processing conditions, the HDT of PLLA/talc specimens reached a similar value at a talc content of 20 wt.%, which was much higher than the BAAD content. Differential scanning calorimetry and X-ray diffraction analyses were applied to determine the melting and crystallization behavior of the PLLA/BAAD blends. Polarized optical microscopy was used to observe the crystalline morphologies. Thermogravimetric analysis was employed to study the effect of BAAD on the thermal stability of PLLA. Measurement of the mechanical property confirmed that the addition of BAAD was beneficial to the enhancement of the mechanical properties of the resulting blends. However, the tensile strength of the PLLA/talc composites decreased with increasing weight fraction of talc.


2018 ◽  
Vol 38 (8) ◽  
pp. 785-793 ◽  
Author(s):  
Leila Bounabi ◽  
Naima Bouslah Mokhnachi ◽  
Amar Djadoun ◽  
Nabila Haddadine ◽  
Regis Barille

Abstract Carboxymethylcellulose/poly(ethylene glycol) (CMC/PEG) blend and CMC/PEG/montmorillonite (MMT) nanocomposites were produced by the solvent casting method. The clay, a sodium MMT, was incorporated in the polymer matrix at low weight loadings (from 1 wt% to 7 wt%). The MMT dispersion in the matrix was evaluated by X-ray diffraction, which revealed an intercalated structure of the nanocomposites. Different levels of intercalation have been detected. The changes in morphology caused by the addition of layered silicate on CMC/PEG blend were investigated by scanning electron microscopy (SEM). The SEM images of CMC/PEG blend containing 5% of MMT displayed more homogenous morphology than CMC/PEG blend. The compatibilizing performance of the filler was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. The effect of the introduction of the clay on the crystallization temperature, melting temperature and crystallization degree of CMC/PEG revealed that clay behaved as a nucleating agent and enhanced the crystallization rate of PEG. Furthermore, it was demonstrated that the addition of a small percentage of montmorillonite (1%) was enough to improve the thermal stability of the nanocomposites.


2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


2012 ◽  
Vol 182-183 ◽  
pp. 259-264
Author(s):  
Jia Wei Duan ◽  
Qiang Dou

In this study polypropylene (PP) composites containing β-nucleating agent (NT-C) and talc filler were prepared by melt compounding. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical tests. The results indicate that talc suppresses the formation of β phase, but promotes the formation of α phase. The Izod notched impact strength and tensile strength of β-PP/talc composites are superior to those of PP/talc composites, indicating an outstanding balance of stiffness and toughness of β-PP/talc composites.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Azmi Seyhun Kipcak ◽  
Nil Baran Acarali ◽  
Emek Moroydor Derun ◽  
Nurcan Tugrul ◽  
Sabriye Piskin

Magnesium borate (MB) is a technical ceramic exhibiting high heat resistance, corrosion resistance, great mechanical strength, great insulation properties, lightweightness, high strength, and a high coefficient of elasticity. Zinc borate (ZB) can be used as a multifunctional synergistic additive in addition to flame retardant additives in polymers. In this study, the raw materials of zinc oxide (ZnO), magnesium oxide (MgO), and boric acid (H3BO3) were used in the mole ratio of 1 : 1 : 9, which was obtained from preexperiments. Using the starting materials, hydrothermal synthesis was applied, and characterisation of the products was performed using X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) and Raman spectroscopies. The forms of Zn3B6O12·3.5H2O, MgO(B2O3)3·7(H2O), and Mg2(B6O7(OH)6)2·9(H2O) were synthesised successfully. Moreover, the surface morphology was investigated using scanning electron microscopy (SEM), and the B2O3content was determined. In addition, the reaction yields were calculated. The results of the B2O3content analysis were in compliance with the literature values. Examination of the SEM images indicated that the obtained nanoscale minerals had a reaction efficiency ranging between 63–74% for MB and 87–98% for ZB. Finally, the fire-retarding properties of the synthesised pure MBs, pure ZBs, and mixtures of MB and ZB were determined using differential thermal analysis and thermal gravimetry (DTA-TG) and differential scanning calorimetry (DSC).


2008 ◽  
Vol 23 (2) ◽  
pp. 565-569 ◽  
Author(s):  
Runrun Duan ◽  
Michael S. Haluska ◽  
Robert F. Speyer

Compositions of xBiLaO3–(1 − x) PbTiO3 over the range 0 ≤ x ≤ 0.225 were calcined and sintered. The dielectric constant with temperature and differential scanning calorimetry measurements were in excellent agreement with respect to Curie-like tetragonal to cubic transformations starting at 495 °C for pure PbTiO3, shifting to lower temperatures with increasing x. For compositions of x ≥ 0.05, a second higher-temperature (∼600 °C) endotherm, and matching dielectric anomaly, were consistently observed, for which there were no structural changes indicated by hot-stage x-ray diffraction. This transformation was speculated to be based on a thermally induced desegregation of B-site cations.


2010 ◽  
Vol 43 (4) ◽  
pp. 757-761 ◽  
Author(s):  
Samuel Shian ◽  
Kenneth H. Sandhage

The chemical, electrochemical, optical and electro-optical properties of titanium oxyfluoride, TiOF2, have led to interest in this compound for a number of applications. Prior analyses have indicated that TiOF2possesses a simple cubic structure (space groupPm{\overline 3}m) at room temperature. Three-dimensional nanostructured assemblies of polycrystalline TiOF2have recently been synthesizedviachemical conversion of intricate SiO2structures by metathetic reaction with TiF4(g). Rietveld analysis has been used to evaluate the structure of the TiOF2product formed by such reaction at 623 K. Unlike prior reports, this TiOF2product possessed a hexagonal structure (space groupR{\overline 3}c) at room temperature. Upon heating through 333–338 K, the hexagonal TiOF2polymorph converted into cubic (Pm{\overline 3}m) TiOF2. Differential scanning calorimetry and X-ray diffraction analyses have been used to evaluate this thermally induced phase transformation.


2012 ◽  
Vol 549 ◽  
pp. 322-326 ◽  
Author(s):  
Yong Chen ◽  
Qiang Dou

The effect of a nucleating agent (NT-C) on the crystallization behavior of poly(lactic acid) (PLA) was studied. The melting and crystallization behavior and spherulitic morphology of the nucleated PLA were investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increase, the spherulitic size decrease for the nucleated PLA. But the crystal structure of the nucleated PLA is not changed.


Sign in / Sign up

Export Citation Format

Share Document