scholarly journals The Effect of Hybridisation on Mechanical Properties and Water Absorption Behaviour of Woven Jute/Ramie Reinforced Epoxy Composites

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2964
Author(s):  
Cionita Tezara ◽  
Agung Efriyo Hadi ◽  
Januar Parlaungan Siregar ◽  
Zalinawati Muhamad ◽  
Mohammad Hazim Mohamad Hamdan ◽  
...  

Recently, the most critical issue related to the use of natural fibre-reinforced polymer composites (NFRPC) is the degradation properties of composites exposed to the environment. NFRPC’s moisture absorption behaviour has adverse effects on the composite’s mechanical properties and dimensional stability. The purpose of this study is to analyse the mechanical properties of epoxy composites reinforced by jute–ramie hybridisation. This study also analysed the effect of stacking sequence hybridisation of the jute–ramie composite on water absorption behaviour. A five-layer different type of stacking sequence of single and hybrid jute–ramie is produced with the hand lay-up method. The results obtained from this study found that the mechanical properties and water absorption behaviour of a single jute fibre are lower compared to a single ramie fibre. The hybrid of jute–ramie has been able to increase the performance of composite compared to pure jute composites. The mechanical properties of the hybrid jute–ramie composite show a reduction effect after exposure to an aqueous environment due to the breakdown of fibre matrix interfacial bonding. However, after 28 days of immersion, all types of the stacking sequence’s mechanical properties are still higher than that of pure epoxy resin. In conclusion, the appropriate sequence of stacking and selecting the material used are two factors that predominantly affect the mechanical properties and water absorption behaviour. The hybrid composites with the desired and preferable properties can be manufactured using a hand-lay-up technique and used in the various industrial applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


2014 ◽  
Vol 600 ◽  
pp. 569-575
Author(s):  
Ángel Marroquín de Jesús ◽  
Juan Manuel Olivares Ramírez ◽  
José Luis Reyes-Araiza ◽  
Alejandro Manzano-Ramirez ◽  
Luis Miguel Apatiga Castro ◽  
...  

The use of eco-friendly composites has gained attraction due to its lightweight and moderate strength in recent years. The aim of this paper was to study the influence of the stacking sequence of glass and henequen fabrics on the mechanical properties of epoxy composites. Fiber/Matrix interface adhesion was examined using SEM. It was observed how the tensile and flexural properties of the hybrid reinforced epoxy laminates with henequen and glass fabrics, increase as the number of layers of henequen woven fabric decrease while stacking sequence does not have a great effect on the tensile properties. However, when ten layers of henequen fabric were used, a eco-friendly composite material with good mechanical strength was obtained due to the mechanical anchoring of the henequen fabric with the epoxy resin. Hence, it is clearly shown how by tailoring the geometry of the fabric, improvements in the mechanical properties of eco-friendly polymer composites can be achieved.


Author(s):  
Ambareesh K V

Abstract: Easy availability of natural fibre, low cost and ease of manufacturing have urged the attention of researchers towards the possibility of reinforcement of natural fiber to improve their mechanical properties and study the extent to which they satisfy the required specifications of good reinforced polymer composite for industrial and structural applications. Polymer composites made of natural fiber is susceptible for moisture. Moisture absorption in such composites mainly because of hydrophilic nature of natural fibers. Water uptake of natural fiber reinforced composites has an effect on different. Lot of researchers prepared the natural fiber reinforced composites without conducting water absorption tests; hence it is the potential area to investigate the behavior of the composites with different moisture absorption. In this research the experimental sequence and the materials are used for the study of coir and Sisal short fiber reinforced epoxy matrix composites. The coir and Sisal short fibers are made into the short fibers with 10 mm x 10 mm x 5 mm size. The Epoxy Resin-LY556(Di glycidyl ether of bi phenol) and Hardner-HYD951 (Tetra mine), the water absorption behaviors are analyzed in the coir and Sisal short fibers reinforced epoxy composites. The water absorption behaviors of the epoxy composites reinforced with the coir and sisal short fibers with 25, 30 and 35wt% were analyzed at three different water environments, such as sea water, distilled water, and tap water for 12 days at room temperature. It was observed that the composites show the high level of the water absorption percentage at sea water immersion as compared to the other water environments. Due to the water absorption, the mechanical properties of macro particle/epoxy composites were decreased at all weight percentages. Keywords: Natural fibre, Moisture absorption, Coir and sisal short fibre, Reinforced polymer composites, Water absorption behaviour Polymer matrix composite (Epoxy resin) using Coir and sisal short fibre and to study its moisture absorption behaviour


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 625-635
Author(s):  
Hai Deng ◽  
Xinpei Wei ◽  
Chao Wang ◽  
Jinghao Yang ◽  
Zhigang Li

Abstract Although natural fibre-based thermoplastic composites (NFCs) have the advantages of environmental compatibility and low cost, their mechanical properties are still relatively poor. Hybridization with basalt fibres (BFs) can broaden the industrial applications of NFCs. Hybrid composites were manufactured by means of interlayer hybrid reinforcement; that is, the hybrid composites were prepared by the lamination moulding of BF prepregs and hemp/polylactide fibre (HF/PLA) felts. The effects of cryogenic treatment and interfacial modification in BF hybridization on the mechanical properties of HF/PLA composites were investigated. The study revealed that the hybridization of BFs with hemp fibres (HFs) significantly increased the mechanical properties of composites, and the cryogenic treatment and interface modification of BFs also improved the performance of hybrid composites. Compared with those of untreated BF-reinforced composites (UBF/HF/PLA), the tensile strength, flexural strength, and impact strength were increased by approximately 28.5% (120.82 MPa), 44.6% (90.29 MPa), and 192.1% (61.0 kJ/m2), respectively.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.


2021 ◽  
pp. 1-12
Author(s):  
Vijay Raghunathan ◽  
Jafrey Daniel James Dhilip ◽  
Mohan Ramesh ◽  
Ramprasath Kumaresan ◽  
Srivenkateswaran Govindarajan ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1501 ◽  
Author(s):  
Soundhar Arumugam ◽  
Jayakrishna Kandasamy ◽  
Ain Umaira Md Shah ◽  
Mohamed Thariq Hameed Sultan ◽  
Syafiqah Nur Azrie Safri ◽  
...  

This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young’s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.


Sign in / Sign up

Export Citation Format

Share Document