Tensile and Flexural Strength of Untreated Woven Henequen-Glass Fabric Reinforced Epoxy Hybrid Composites

2014 ◽  
Vol 600 ◽  
pp. 569-575
Author(s):  
Ángel Marroquín de Jesús ◽  
Juan Manuel Olivares Ramírez ◽  
José Luis Reyes-Araiza ◽  
Alejandro Manzano-Ramirez ◽  
Luis Miguel Apatiga Castro ◽  
...  

The use of eco-friendly composites has gained attraction due to its lightweight and moderate strength in recent years. The aim of this paper was to study the influence of the stacking sequence of glass and henequen fabrics on the mechanical properties of epoxy composites. Fiber/Matrix interface adhesion was examined using SEM. It was observed how the tensile and flexural properties of the hybrid reinforced epoxy laminates with henequen and glass fabrics, increase as the number of layers of henequen woven fabric decrease while stacking sequence does not have a great effect on the tensile properties. However, when ten layers of henequen fabric were used, a eco-friendly composite material with good mechanical strength was obtained due to the mechanical anchoring of the henequen fabric with the epoxy resin. Hence, it is clearly shown how by tailoring the geometry of the fabric, improvements in the mechanical properties of eco-friendly polymer composites can be achieved.

2013 ◽  
Vol 833 ◽  
pp. 159-164 ◽  
Author(s):  
Xiu Qian Li ◽  
Hai Peng Qiu ◽  
Jian Jiao

The ZrC/SiC multi-components modified C/C composites were prepared by using a hybrid precursor containning polycarbosilane and organic zirconium-contained polymeric precursor as impregnant and C/C composites of low density as preform. The porosity, microstructure and mechanical properties of samples were characterized with mercury injection apparatus, scanning electron microscopy and universal electron testing machine respectively. The results show that the porosity and average pore diameter decrease firstly and increase subsequently with the increase of organic zirconium content of the precursor. When the content of organic zirconium is 50%, the porosity and average pore diameter reach minimum which were7.27% and 0.0795um respectively. The most probabilistic pore diameter shifted from 10-100um to 1-10um at the same time; Meanwhile, the flexural properties also increases and drops immediately as the content of organic zirconium in the precursor adds. When the content of organic zirconium is 25%, the flexural strength reaches maximum of 245.20MPa.The improved flexural properties is attributed to the proper bonding of fiber-matrix interface and the low porosity of samples.


2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2964
Author(s):  
Cionita Tezara ◽  
Agung Efriyo Hadi ◽  
Januar Parlaungan Siregar ◽  
Zalinawati Muhamad ◽  
Mohammad Hazim Mohamad Hamdan ◽  
...  

Recently, the most critical issue related to the use of natural fibre-reinforced polymer composites (NFRPC) is the degradation properties of composites exposed to the environment. NFRPC’s moisture absorption behaviour has adverse effects on the composite’s mechanical properties and dimensional stability. The purpose of this study is to analyse the mechanical properties of epoxy composites reinforced by jute–ramie hybridisation. This study also analysed the effect of stacking sequence hybridisation of the jute–ramie composite on water absorption behaviour. A five-layer different type of stacking sequence of single and hybrid jute–ramie is produced with the hand lay-up method. The results obtained from this study found that the mechanical properties and water absorption behaviour of a single jute fibre are lower compared to a single ramie fibre. The hybrid of jute–ramie has been able to increase the performance of composite compared to pure jute composites. The mechanical properties of the hybrid jute–ramie composite show a reduction effect after exposure to an aqueous environment due to the breakdown of fibre matrix interfacial bonding. However, after 28 days of immersion, all types of the stacking sequence’s mechanical properties are still higher than that of pure epoxy resin. In conclusion, the appropriate sequence of stacking and selecting the material used are two factors that predominantly affect the mechanical properties and water absorption behaviour. The hybrid composites with the desired and preferable properties can be manufactured using a hand-lay-up technique and used in the various industrial applications.


2016 ◽  
Vol 368 ◽  
pp. 150-153
Author(s):  
Veronika Mušutová ◽  
Jan Mourek ◽  
Petr Tej

This paper is concerned with the analysis of geometric composites, whose reinforcement was made of plain weave fabric with different geometries. They were determined following the basic parameters of the textiles e.g. crimp length, crimp amplitude, thickness of the woven fabric, dimensions of the cross-sectional tow (tow width, tow height) and crimp angle. The number of fibers in the warp and tow strands and number of layers in the composites were also determined. These composites comprised of the same materials were subjected to a standard tensile test, according to DIN EN ISO 14 129. The mechanical properties of the composite as a whole were determined by tensile test.


2020 ◽  
pp. 1-7
Author(s):  
Noutegomo Boris ◽  

The aim of this work focuses on the study of effect of moisture on the mechanical properties of natural fiber composite (NFC) plaster/Rhecktophyllum camerunense (RC). Indeed, the treated and untreated RC fiber reinforced plaster composites are fabricated and submitted to hygrothermal ageing in an environmental enclosure of 23%, 54% and 75% relative humidities at 23°C. Flexural test was carryout under a threepoint bending approach to NF EN 6583 standard. Five specimens were tested for each case. the results indicate that the flexural properties of all the composites decreased with the increasing of moisture due to degradation of the fiber matrix interface.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document