scholarly journals Structural and Dipole-Relaxation Processes in Epoxy–Multilayer Graphene Composites with Low Filler Content

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3360
Author(s):  
Borys M. Gorelov ◽  
Oleksandr V. Mischanchuk ◽  
Nadia V. Sigareva ◽  
Sergey V. Shulga ◽  
Alla M. Gorb ◽  
...  

Multilayered graphene nanoplatelets (MLGs) were prepared from thermally expanded graphite flakes using an electrochemical technique. Morphological characterization of MLGs was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Raman spectroscopy (RS), and the Brunauer–Emmett–Teller (BET) method. DGEBA-epoxy-based nanocomposites filled with synthesized MLGs were studied using Static Mechanical Loading (SML), Thermal Desorption Mass Spectroscopy (TDMS), Broad-Band Dielectric Spectroscopy (BDS), and Positron Annihilation Lifetime Spectroscopy (PALS). The mass loading of the MLGs in the nanocomposites was varied between 0.0, 0.1, 0.2, 0.5, and 1% in the case of the SML study and 0.0, 1.0, 2, and 5% for the other measurements. Enhancements in the compression strength and the Young’s modulus were obtained at extremely low loadings (C≤ 0.01%). An essential increase in thermal stability and a decrease in destruction activation energy were observed at C≤ 5%. Both the dielectric permittivity (ε1) and the dielectric loss factor (ε2) increased with increasing C over the entire frequency region tested (4 Hz–8 MHz). Increased ε2 is correlated with decreased free volume when increasing C. Physical mechanisms of MLG–epoxy interactions underlying the effects observed are discussed.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


2011 ◽  
Vol 239-242 ◽  
pp. 891-894 ◽  
Author(s):  
Tsung Fu Chien ◽  
Jen Hwan Tsai ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chia Lin Wu

In this study, thin films of CaBi4Ti4O15with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7A/cm2and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C


2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1382 ◽  
Author(s):  
Dmitry Alentiev ◽  
Dariya Dzhaparidze ◽  
Natalia Gavrilova ◽  
Victor Shantarovich ◽  
Elena Kiseleva ◽  
...  

New microporous homopolymers were readily prepared from norbornadiene-2,5, its dimer and trimer by addition (vinyl) polymerization of the corresponding monomers with 60–98% yields. As a catalyst Pd-N-heterocyclic carbene complex or Ni(II) 2-ethylhexanoate activated with Na+[B(3,5-(CF3)2C6H3)4]− or methylaluminoxane was used. The synthesized polynorbornenes are cross-linked and insoluble. They are glassy and amorphous polymers. Depending on the nature of the catalyst applied, BET surface areas were in the range of 420–970 m2/g. The polymers with the highest surface area were obtained in the presence of Pd-catalysts from the trimer of norbornadiene-2,5. The total pore volume of the polymers varies from 0.39 to 0.79 cm3/g, while the true volume of micropores was 0.14–0.16 cm3/g according to t-plot. These polymers gave CO2 uptake from 1.2 to 1.9 mmol/g at 273 K and 1 atm. The porous structure of new polymers was also studied by means of wide-angle X-ray diffraction and positron annihilation lifetime spectroscopy.


2014 ◽  
Vol 8 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Marija Prekajski ◽  
Biljana Babic ◽  
Dusan Bucevac ◽  
Jelena Pantic ◽  
Jelena Gulicovski ◽  
...  

A new technology based on bio-templating approach was proposed in this paper. Egg-shell membrane (ESM) has been employed as a natural biotemplate. Fibrous oxide ceramics was prepared by wet impregnation of biological template with water solution of cerium nitrate. The template was derived from membranes of fresh chicken eggs. Repeated impregnation, pyrolysis and final calcination in the range of 600 to 1200?C in air resulted in template burnout and consolidation of the oxide layers. At low temperatures, the obtained products had structure which corresponded to the negative replication of biological templates. Unique bio-morphic CeO2 microstructures with interwoven networks were synthesized and characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD), whereas low-temperature nitrogen adsorption (BET) method was used in order to characterize porous properties.


2016 ◽  
Vol 230 (9) ◽  
Author(s):  
Mauro Coduri ◽  
Michela Maisano ◽  
Maria Vittoria Dozzi ◽  
Elena Selli

AbstractPreferential growth of anatase crystallites along different directions is known to deeply affect their photocatalytic properties, especially with respect to the exposure of the reactive {001} facets. Its extent can be easily quantified through simple geometric calculations, on the basis of crystal sizes extracted for specific directions by means of X-Ray Diffraction data analysis. Nevertheless, the actual results depend on the method employed for such a quantification. Here we report on a comparative morphological investigation, performed by employing the Scherrer equation and the line profile from Rietveld refinements, on shape-controlled anatase photocatalysts produced by employing HF as capping agent. Compared to the Rietveld-based method, the use of the Scherrer equation produces a systematic underestimation of crystallite dimensions, especially concerning the [100] direction, which in turn causes the percentage of exposed {001} crystal facets to be underestimated. Neglecting instrumental-related effects may further reduce the estimate.


2016 ◽  
Vol 18 (2) ◽  
pp. 339-347 ◽  

<p>The aim of the present study was to synthesize a sorbent, for arsenic removal from aqueous solutions, reusing two waste materials (slag and red mud). The sorbent was prepared after chemical and thermal treatment, during which amorphous silica sol and FeOOH sol were produced simultaneously and form Fe-Si complexes on the surface of the slag. To characterize the sorbent Powder X-ray diffraction (XRD); Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM-EDX) were applied. The surface area (BET method) and the Point of Zero Charge (PZC) of the sorbent were determined.). The sorption efficiency of the sorbent produced was investigated with kinetic and equilibrium studies, performed in batch conditions. The concentration of arsenic in solutions was determined by electro thermal atomic absorption spectroscopy (GF-AAS). The results of the study showed that with the described process, using metallurgical wastes, iron oxyhydroxides were &ldquo;loaded&rdquo; onto slag producing an effective sorbent for arsenic removal. Kinetic experiments proved that equilibrium was achieved within 15 hours, while the maximum adsorption capacity as evidenced by equilibrium experiments, was 16.14 mg g<sup>-1</sup>. Data proved to fit better to the Langmuir equation.</p>


Sign in / Sign up

Export Citation Format

Share Document