scholarly journals Design of Novel PLA/OMMT Films with Improved Gas Barrier and Mechanical Properties by Intercalating OMMT Interlayer with High Gas Barrier Polymers

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3962
Author(s):  
Abdul Shakoor Shar ◽  
Caili Zhang ◽  
Xieqing Song ◽  
Yunxuan Weng ◽  
Qiuyue Du

Polymer/clay composites are an innovative class of materials. In this study, we present a facile method for the preparation of biodegradable and robust PLA/organomodified montmorillonite (OMMT) composite films with excellent gas barrier performance. When the design of PLA/OMMT composite films, in addition to making OMMT have good intercalation effect in the matrix, the compatibility of intercalating polymer and matrix should also be considered. In this work, two polymers with high gas barrier properties, namely poly(vinyl alcohol) (PVA) and ethylene vinyl alcohol copolymer (EVOH), were selected to intercalate OMMT. The morphology and microstructures of the prepared PLA/PVA/OMMT and PLA/EVOH/OMMT composites were characterized by the X-ray diffraction measurement, scanning electron microscopy, and differential scanning calorimetry. It was shown that the good dispersibility of PVA in the PLA matrix, rather than the intercalation effect, was responsible for the improved gas barrier and mechanical properties of PLA/PVA/OMMT composite. The elongation at break increases from 4.5% to 22.7% when 1 wt % PVA is added to PLA/OMMT. Moreover, gas barrier of PLA/PVA1/OMMT measured as O2 permeability is 52.8% higher than that of neat PLA. This work provides a route to intercalate OMMT interlayer with high gas barrier polymers and thus can be a useful reference to fabricate PLA/OMMT composites with improved gas barrier and mechanical properties. A comparison of oxygen permeabilities with existing commercial packaging films indicates that the biodegradable PLA/PVA/OMMT may serve as a viable substitute for packaging film applications.

Carbon ◽  
2015 ◽  
Vol 82 ◽  
pp. 513-522 ◽  
Author(s):  
Cheng-Lee Lai ◽  
Jung-Tsai Chen ◽  
Ywu-Jang Fu ◽  
Wei-Ren Liu ◽  
Yueh-Ru Zhong ◽  
...  

2016 ◽  
Vol 56 (8) ◽  
pp. 922-931 ◽  
Author(s):  
Xiumei Gao ◽  
Dekun Sheng ◽  
Xiangdong Liu ◽  
Tongbing Li ◽  
Fance Ji ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nehad N. Rozik ◽  
Emad Saad Shafik ◽  
Salwa L. Abd-El-Messieh

Purpose This study aims to polymerize of 1-butyl-3-vinylimidazolium bromide (PIL). PIL was embedded into PVA with a different content ratio by casting method. This research also deals with the effect of adding PIL in different proportions to PVA on the electrical and mechanical properties properties in addition to the morphology of the prepared samples. Design/methodology/approach 1-Butyl-3-vinylimidazolium bromide was synthesized through quaternization and free radical polymerization. The resulting polymer was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis and differential scanning calorimetry. In addition to the morphology of PVA, PVA/PIL was investigated by polarizing microscope. Also, the effect of PIL content on the electrical and mechanical properties was evaluated. Findings The findings of this study might lead to new applications for PVA and PILs in electrical and dielectrics. The mechanical results revealed that the tensile strength increased slightly with increasing polyionic liquid (PIL) content and decreased above 10% PIL. While the elongation at break increased significantly with increasing PIL content and begin to decrease above 10% PIL. Also, the electrical property of the poly(vinyl alcohol) (PVA)/PIL blends was improved because of the strong plasticizing effect of PIL. Also, the electrical conductivity of these polymer electrolytes is greatly increased. This indicates that the imidazolium-based PIL has an effective approach that leads to an increase in the conductivity of the polymer. The PILs/PVA design will not only enrich the chemical structure but also will contribute to green manufacturing techniques and a processing methodology that enables green membrane manufacture. Originality/value This study contributes to green manufacturing techniques and a processing methodology that enables “green” membrane manufacture.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Qun Wang ◽  
Lu Qi

AbstractA group of films mainly composed of sericin and poly(vinyl alcohol) (PVA), using boric acid (BA) as a modifier, were prepared by a technique of solution casting. In this work, the effect of BA and sericin on the mechanical properties and water resistance of the films was analyzed, the interior morphology of the films were described by a scanning electron microscopy (SEM), the thermal stability of the films was characterized by differential scanning calorimetry (DSC), and the reaction mechanism was proposed according to the previous literature and the test of Fourier transform infrared spectrum (FTIR). Results indicated that, the properties of the membrane were the functions of the blend ratio of sercin to PVA and the content of BA. The use of BA increased the tensile strength, improved the water resistance and the thermal stability, and varied the interior morphology of the films. The content of sericin greatly influenced the combination of properties of the films, especially the mechanical properties, interior morphology, thermal stability, and water resistance reducing with the increasing of sericin content. The films have potential to be used in materials, such as skin-care coatings for beauty, percutaneous drug delivery systems for exterior intact skin, due to the characteristics of the components and the good mechanical properties of the films.


2011 ◽  
Vol 287-290 ◽  
pp. 302-305
Author(s):  
Xi Ping Gao ◽  
Ke Yong Tang ◽  
Yu Qing Zhang

The mechanical properties, swelling, solubility, and optical properties of composite films with poly(vinyl alcohol) (PVA) and gelatin were studied. With increasing the PVA content in the composite films, the tensile strength (TS) and elongation at break (EB) of the films increase. The swelling and solubility are different with different gelatin/PVA ratios, with the lowest at 1:5.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1054 ◽  
Author(s):  
Xunjun Chen ◽  
Shufang Wu ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

Blend films of feather keratin (FK) and synthetic poly(vinyl alcohol) (PVA) that were compatibilized by tris(hydroxymethyl)aminomethane (Tris) were successfully prepared by a solution-casting method. The scanning electron microscopy (SEM) results showed that a phase separation occurred in the FK/PVA/Tris blended system. Analysis by Fourier transform infrared spectroscopy indicated that the main interactions between the three components were hydrogen bonds. In addition, X-ray diffraction analysis showed that the FK/PVA/Tris blend films were partially crystalline. The barrier properties, mechanical properties, and contact angles of the FK/PVA/Tris films were investigated to determine the effects of the PVA and Tris concentrations. More specifically, upon increasing the PVA content, the elongation at break, the hydrophilicity, and the oxygen barrier properties were enhanced. However, at a constant PVA content, an increase in the Tris content caused the oxygen permeability and the contact angle to decrease, while the tensile strength, elongation at break, and oxygen barrier properties were enhanced. These results indicated that the mechanical properties and gas resistance of the FK/PVA/Tris blend films could be successfully improved using the method described herein, confirming that this route provided a convenient and promising means to prepare FK plastics for practical applications.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


Sign in / Sign up

Export Citation Format

Share Document