scholarly journals Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4002
Author(s):  
Tamilla Mirzayeva ◽  
Jana Čopíková ◽  
František Kvasnička ◽  
Roman Bleha ◽  
Andriy Synytsya

Hyaluronic acid, together with collagen, vitamins or plant extracts, is a part of many cosmetic and food preparations. For example, this polysaccharide is used in formulation of many food supplements due to its protective effects on human health. In this work, the screening of the chemical composition of three chosen dietary supplements (powder, tablets and capsules) containing hyaluronic acid was carried out using Fourier-transform infrared spectroscopy. Because of the low amount of analyte in all these samples, it was isolated or concentrated prior to the analysis using a suitable sequential fractionation protocol. Individual isolation procedures were established for each sample based on their declared composition. Firstly, the major components such as collagen or vitamins were removed to obtain polysaccharide fractions by the enzymatic treatment and/or washing out with the appropriate solvents. In some cases, the water insoluble part was removed from the rest dissolved in water. Then, hyaluronic acid was precipitated with copper(II) cations and thus separated from the other polysaccharides. Finally, the analyte was identified in the enriched fractions by the characteristic vibrational bands. The amount of hyaluronic acid in the purified fractions was determined in three ways: gravimetrically, spectrophotometrically, and using isotachophoresis. The combination of the appropriate preparative and analytical steps led to the successful evaluation of chemical composition, finding and quantification of hyaluronic acid in all the studied samples.

2014 ◽  
Vol 548-549 ◽  
pp. 133-136
Author(s):  
Yusoff Way ◽  
Hadi Puwanto ◽  
Farizahani ◽  
P.T. Pham

Selective Laser Sintering (SLS) or Laser Sintering (LS) allows functional parts to be produced in a wide range of powdered materials using a dedicated machine, and is thus gaining popularity within the field of Rapid Prototyping (RP). One of the advantages of employing LS is that the loose powder of the building chamber can be recycled. The properties of polymer powder significantly influence the melt viscosity and sintering mechanism during Laser Sintering (LS) processes which results in a good surface finish. The objective of this research is to investigate the chemical composition of fresh polymer materials used in Laser Sintering. There are seven virgin SLS materials which are PA2200, GF3200, Alumide, PrimeCast, PrimePart, Duraflex and CastForm. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze the chemical composition of the materials by using infrared radiation and absorbed frequency. The spectra show that similar functional groups were found in the materials apart from PrimePart and Duraflex. Obtained data from this analysis could be used to investigate on how the fresh and recycled powder materials with different chemical properties would affect the part surface finish.


2019 ◽  
Vol 9 (01) ◽  
pp. 25
Author(s):  
Frederikus Tunjung Seta ◽  
Susi Sugesty ◽  
Reynaldo Biantoro

Saat ini Indonesia masih mengandalkan impor nitroselulosa sebagai bahan baku propelan. Tujuan penelitian ini adalah mencari komposisi optimum pembuatan nitroselulosa untuk propelan dari bahan baku pulp larut bambu Beema dan Industri sebagai alternatif dari pulp larut kayu. Sebelum proses nitrasi, pulp larut bambu Beema dan bambu Industri mengalami proses perlakuan awal dengan menggunakan willey mill, pulp larut kemudian diayak dan diambil pulp dengan ukuran kurang dari 60 mesh. Pada proses nitrasi, perbandingan bahan kimia yang digunakan adalah formula 1 (HNO3:HNO3 Fumming:H2SO4= 2,5:1:9,5), formula 2 (HNO3:HNO3 Fumming:H2SO4= 3:1:7,5), dan formula 3 (HNO3:HNO3 Fumming:H2SO4= 1:1:1,6). Hasil yang didapatkan pada penelitian ini pulp larut dari bahan baku bambu Beema dengan formula 3 mampu mendapatkan kadar nitrogen tertinggi (12,97%). Analisis Fourier-transform infrared spectroscopy (FTIR) menunjukkan adanya gugus nitro dan pada uji bakar juga menunjukkan bahwa nitroselulosa dapat terbakar dengan cepat. Akan tetapi, nilai kelarutan dalam aseton dan eter-alkohol nitroselulosa dari kedua jenis bambu menunjukkan bahwa distribusi kadar nitrogen pada proses nitrasi masih belum memenuhi standar.Kata kunci: bambu, kadar nitrogen, nitroselulosa, pulp larut, propelanCharacterization of Nitrocellulose from Beema Bamboo and Industrial Bamboo Dissolving PulpAbstractCurrently, Indonesia still relies on imports of nitrocellulose as a propellant raw material. The objective of this research is to determine the optimum composition of nitrocellulose making for propellant from Beema bamboo pulp and Industrial bamboo pulp as an alternative of dissolving pulp from wood. Prior to the nitration process, both dissolving pulp of Beema bamboo and industrial undergo a pretreatment process using willey mill, the pulp then sieved and taken with a size less than 60 mesh. In the nitration process, the chemical composition used is  formula 1 (HNO3: HNO3 Fumming: H2SO4 = 2.5: 1: 9.5), formula 2 (HNO3: HNO3 Fumming: H2SO4 = 3: 1: 7,5) and the   formula 3 (HNO3: HNO3 Fumming: H2SO4 = 1: 1: 1,6). Result showed that dissolving pulp from Beema bamboo with third formula get the highest nitrogen content (12,97%). Fourier-transform infrared spectroscopy (FTIR)  analysis showed that all of the nitrocellulose have nitro group and with burning test also proved that nitrocellulose can be rapidly burdened. However, the solubility of  nitrocellulose in acetone and ethers-alcohols indicates that the distribution of nitrogen content in the nitration process is not meet the standard yet. Keywords: bamboo, nitrogen content, nitrocellulose, dissolving pulp, propellant


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253390
Author(s):  
Uzma Younis ◽  
Ashfaq Ahmad Rahi ◽  
Subhan Danish ◽  
Muhammad Arif Ali ◽  
Niaz Ahmed ◽  
...  

Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study’s primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules’ FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.


2018 ◽  
Vol 68 (12) ◽  
pp. 2787-2795 ◽  
Author(s):  
Mariana Daniela Berechet ◽  
Elena Manaila ◽  
Maria Daniela Stelescu ◽  
Gabriela Craciun

In the present study we have investigated the chemical composition of the essential oils extracted by the procedure of hydrodistillation, from fresh flowers of Matricaria Chamomilla L. and Achillea Millefolium from Romania, two genres belonging to the same family, Asteraceae. The obtained essential oils were analyzed using the techniques of Gas Chromatography coupled with Mass Spectrometer and Fourier Transform Infrared Spectroscopy. It was found that both essential oils were dominated by the presence of terpenes. Aliphatic components were modest represented in both essential oils. The results were compared with those reported by other authors. Similarities consist in the domination of the same class of compounds and in the same modest representation of others. One of differences consists in the presence of some compounds with significant medicinal role, which were not reported by other authors. Another difference consists in the presence of some compounds in higher concentrations than those reported by other authors.


Sign in / Sign up

Export Citation Format

Share Document