scholarly journals Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4308
Author(s):  
Mahmoud Moustafa ◽  
M. A. Abu-Saied ◽  
Tarek H. Taha ◽  
Mohamed Elnouby ◽  
Eman A. El Desouky ◽  
...  

κ-carrageenan is useful for its superior gelling, hydrogel, and thickening properties. The purpose of the study was to maximize the hydrogel properties and water-absorbing capacity of κ-carrageenan by blending it with starch from potato peels to be used as safe and biodegradable water-absorbent children’s toys. The prepared materials were analyzed using FTIR and Raman spectroscopy to analyze the functional groups. Results showed that there was a shift in the characteristic peaks of starch and κ-carrageenan, which indicated their proper reaction during blend formation. In addition, samples show a peak at 1220 cm−1 corresponding to the ester sulfate groups, and at 1670 cm−1 due to the carbonyl group contained in D-galactose. SEM micrographs showed the presence of rough surface topology after blending the two polymers, with the appearance of small pores. In addition, the presence of surface cracks indicates the biodegradability of the prepared membranes that would result after enzymatic treatment. These results are supported by surface roughness results that show the surface of the κ-carrageenan/starch membranes became rougher after enzymatic treatment. The hydrophilicity of the prepared membranes was evaluated from contact angle (CA) measurements and the swelling ratio. The swelling ratio of the prepared membranes increased gradually as the starch ratio increased, reaching 150%, while the water-uptake capacity increased from 48 ± 4% for plain κ-carrageenan to 150 ± 5% for 1:2 κ-carrageenan/starch blends. The amylase enzyme showed an effective ability to degrade both the plain κ-carrageenan and κ-carrageenan/starch membranes, and release glucose units for up to 236 and 563, respectively. According to these results, these blends could be effectively used in making safe and biodegradable molded toys with superior water-absorbing capabilities.

2016 ◽  
Vol 7 (14) ◽  
pp. 2553-2564 ◽  
Author(s):  
Yating Jia ◽  
Weizhong Wang ◽  
Xiaojun Zhou ◽  
Wei Nie ◽  
Liang Chen ◽  
...  

A poly(glycerol sebacate)-based elastomeric copolyesters with improved mechanical properties and higher water uptake capacity.


2017 ◽  
Vol 19 (38) ◽  
pp. 26132-26144 ◽  
Author(s):  
Akhil Pratap Singh ◽  
Kaushik Kundu ◽  
Vikram Singh ◽  
Ramesh L. Gardas ◽  
Sanjib Senapati

In view of this limited research on pILs in microemulsions, here we study the formation and characterization of a series of pIL–water/oil microemulsions with specific questions on the effect of pILs on water uptake capacity and thermal stability of W/O microemulsions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kahina Bouhadjra ◽  
Wahiba Lemlikchi ◽  
Azedine Ferhati ◽  
Samuel Mignard

AbstractIn the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g−1 compared to PP (100 mg g−1) and PPa (125 mg g−1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 772
Author(s):  
Estefanía Álvarez-Castillo ◽  
Carlos Bengoechea ◽  
Antonio Guerrero

The replacement of common acrylic derivatives by biodegradable materials in the formulation of superabsorbent materials would lessen the associated environmental impact. Moreover, the use of by-products or biowastes from the food industry that are usually discarded would promote a desired circular economy. The present study deals with the development of superabsorbent materials based on a by-product from the meat industry, namely plasma protein, focusing on the effects of a freeze-drying stage before blending with glycerol and eventual injection molding. More specifically, this freeze-drying stage is carried out either directly on the protein flour or after its solubilization in deionized water (10% w/w). Superabsorbent materials obtained after this solubilization-freeze-drying process display higher Young’s modulus and tensile strength values, without affecting their water uptake capacity. As greater water uptake is commonly related to poorer mechanical properties, the proposed solubilization-freeze-drying process is a useful strategy for producing strengthened hydrophilic materials.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 486
Author(s):  
Mercedes Jiménez-Rosado ◽  
Víctor Perez-Puyana ◽  
Pablo Sánchez-Cid ◽  
Antonio Guerrero ◽  
Alberto Romero

The union of nanoscience (nanofertilization) with controlled release bioplastic systems could be a key factor for the improvement of fertilization in horticulture, avoiding excessive contamination and reducing the price of the products found in the current market. In this context, the objective of this work was to incorporate ZnO nanoparticles in soy protein-based bioplastic processed using injection moulding. Thus, the concentration of ZnO nanoparticles (0 wt%, 1.0 wt%, 2.0 wt%, 4.5 wt%) and mould temperature (70 °C, 90 °C and 110 °C) were evaluated through a mechanical (flexural and tensile properties), morphological (microstructure and nanoparticle distribution) and functional (water uptake capacity, micronutrient release and biodegradability) characterization. The results indicate that these parameters play an important role in the final characteristics of the bioplastics, being able to modify them. Ultimately, this study increases the versatility and functionality of the use of bioplastics and nanofertilization in horticulture, helping to prevent the greatest environmental impact caused.


Author(s):  
How Wei Benjamin Teo ◽  
Anutosh Chakraborty ◽  
Kim Tiow Ooi

As promising material for gas storage applications, MIL-101(Cr) can further be modified by doping with alkali metal (Li+, Na+, K+) ions. However, the doping concentration should be optimized below 10% to improve the methane adsorption. This article presents (i) the synthesis of MIL-101 (Cr) Metal Organic Frameworks, (ii) the characterization of the proposed doped adsorbent materials by X-ray Diffraction, Scanning Electron Microscopy, N2 Adsorption, Thermo-Gravimetric Analyzer, and (iii) the measurements of methane uptakes for the temperatures ranging from 125 K to 303 K and pressures up to 10 bar. It is found that the Na+ doped MIL-101(Cr) exhibits CH4 uptake capacity of (i) 295 cm3/cm3 at 10 bar and 160 K and (ii) 95 cm3/cm3 at 10 bar at 298 K. This information is important to design adsorbed natural gas (ANG) storage tank under ANG-LNG (liquefied natural gas) coupling conditions.


2021 ◽  
Vol 32 (4) ◽  
pp. 555-560
Author(s):  
Samirah ◽  
Aniek Setiya Budiatin ◽  
Ferdiansyah Mahyudin ◽  
Junaidi Khotib

Abstract Objectives Alendronate are widely used in the treatment of bone disorders characterized by inhibit osteoclast-mediated bone resorption such as Paget’s disease, fibrous dysplasia, myeloma, bone metastases and osteoporosis. In recent studies alendronate improves proliferation and differentiation of osteoblasts, thereby facilitating for bone regeneration. The disadvantages of this class are their poor bioavailability and side effects on oral and intravenous application such as stomach irritation and osteonecrosis in jaw. Thus, local treatment of alendronate is needed in order to achieve high concentration of drug. Bovine hydroxyapatite-gelatin scaffold with alendronate was studied. Glutaraldehyde was used as cross-linking agent, increase the characteristics of this scaffold. The objectives of this study were to manufacture and characterize alendronate scaffold using bovine hydroxyapatite-gelatin and crosslinked by glutaraldehyde. Methods Preparation of cross-linked bovine hydroxyapatite-gelatin and alendronate scaffold with different concentration of glutaraldehyde (0.00, 0.50, 0.75, and 1.00%). The scaffolds were characterized for compressive strength, porosity, density, swelling ratio, in vitro degradation, and cytotoxicity (the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, shorted as MTT assay). Results Bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked with glutaraldehyde showed lower density than without glutaraldehyde. As glutaraldehyde concentration increased, porosity also increased. Eventually, it reduced compressive strength. Swelling ratio and in vitro degradation was negatively dependent on glutaraldehyde concentration. In addition, the scaffold has a good safety by MTT assay. Conclusions Bovine hydroxyapatite-gelatin-alendronate scaffold was fabricated with various concentrations of glutaraldehyde. The presence of glutaraldehyde on bovine hydroxyapatite-gelatin-alendronate is safe and suitable candidate scaffold for bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document