scholarly journals Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4327
Author(s):  
Yassine EL-Ghoul ◽  
Fahad M. Alminderej ◽  
Fehaid M. Alsubaie ◽  
Radwan Alrasheed ◽  
Norah H. Almousa

Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.

2021 ◽  
Vol 28 (10) ◽  
Author(s):  
Bharat R. Paghadar ◽  
J. B. Sainani ◽  
Samith K. M. ◽  
Poornima Bhagavath

AbstractThe scientific and technical advances in the field of polymer science has been abundant in recent years. Amongst the various polymeric materials available in market, synthesis of polyolefins has been in the forefront since decades. A major challenge in this domain remains in attaining stereoregular polyolefins especially polypropylene (PP) and significant efforts were carried out by synthesizing various internal donors (ID) aiding the catalysts involved in producing them. This short review gives an overview of i) various generations of Ziegler–Natta (ZN) catalyst systems ii) general classes of ID that has been demonstrated by the researchers over the past decades iii) their influence on PP isotacticity and polymer properties. The coordination modes of different donor classes on supported ZN system and comparative study especially between phthalate and diether ID classes were also addressed here. This review also presents the studies carried out on phthalate catalyst structure analysis, detailed comparison study on phthalate and diether IDs in terms of PP isotacticity, regioselectivity, hydrogen response, and also their cross combination study and competitive behavior. Further a brief description on other structurally varied IDs like malonates, maleates, silyl diol esters, bifunctional donors, multi ether donors demonstrated for isotactic PP were also presented. Studies conducted on compatibility of incorporation of two different classes of IDs on a single supported ZN system for the fundamental understanding of the catalyst behavior; and also on how mixed donor approach enables in tuning the catalyst for polymer properties were also presented. This review also provides an opportunity to the young minds and the basic researchers from academic point of view by and large to create new polymeric materials with useful properties or modify the existing materials for new applications by incorporating new IDs for further improvisation of the stereo regularity in obtaining the polymers. Graphic Abstract


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1142 ◽  
Author(s):  
Phuong Nguyen-Tri ◽  
Payman Ghassemi ◽  
Pascal Carriere ◽  
Sonil Nanda ◽  
Aymen Amine Assadi ◽  
...  

Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.


Author(s):  
Phuong Nguyen-Tri ◽  
Payman Ghassemin ◽  
Pascal Carriere ◽  
Aymen Amine Assadi ◽  
Dinh Duc Nguyen

Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. In this perspective paper, we review recent progress in the use of AFM-IR in polymer science. We describe first the principle of AFM-IR and the recent improvements to enhance its resolution. We discuss then the last progress in the use of AFM-IR as a super-resolution correlated scanned-probe IR spectroscopy for chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers and biopolymers. To highlight the advantages of AFM-IR, we report here several results in studying crystallization of both miscible and immiscible blends as well as polymer aging. Then, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure and crystallization mechanisms at the nanoscale, which have never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Bernhard V.K.J. Schmidt

Polymer synthesis is a substantial area in polymer science and marks the starting point for all sorts of polymer materials that have a plethora of applications in everyday life but also in academic research [...]


2019 ◽  
Vol 7 (10) ◽  
pp. 3984-3999 ◽  
Author(s):  
Dongyue Zhang ◽  
Xinyuan Xu ◽  
Xiaoling Long ◽  
Kai Cheng ◽  
Jianshu Li

In this review, we summarized the recent advances and strategies on fabrication of functional polymeric materials inspired by diverse of biomolecules for decorating biomaterial interface and other biomedical applications.


1999 ◽  
Vol 39 (8) ◽  
pp. 177-184 ◽  
Author(s):  
Derin Orhon ◽  
Seval Sözen ◽  
Erdem Görgün ◽  
Emine Ubay Çokgör ◽  
Nazik Artan

Coastal tourist areas should be classified as environmentally sensitive areas. Effective nutrient control should be implemented to safeguard the quality of receiving waters in these areas. In this context, the applicable discharge limitations are reviewed with specific reference to European directives and criteria developed for small coastal residential areas in Turkey are reported; wastewater characterization and its impact on treatment technology selection is reviewed; appropriate treatment technologies are evaluated in terms of selecting new applications and upgrading and retrofitting existing systems.


2020 ◽  
Vol 67 (2) ◽  
pp. 115-120
Author(s):  
Raisa A. Alekhina ◽  
Victoriya E. Slavkina ◽  
Yuliya A. Lopatina

The article presents options for recycling polymers. The use of biodegradable materials is promising. This is a special class of polymers that can decompose under aerobic or anaerobic conditions under the action of microorganisms or enzymes forming natural products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts. (Research purpose) The research purpose is in reviewing biodegradable materials that can be used for the manufacture of products used in agriculture. (Materials and methods) The study are based on open information sources containing information about biodegradable materials. Research methods are collecting, studying and comparative analysis of information. (Results and discussion) The article presents the advantages and disadvantages of biodegradable materials, mechanical properties of the main groups of biodegradable polymers. The article provides a summary list of agricultural products that can be made from biodegradable polymer materials. It was found that products from the general group are widely used in agriculture. Authors have found that products from a special group can only be made from biodegradable polymers with a controlled decomposition period in the soil, their use contributes to increasing the productivity of crops. (Conclusions) It was found that biodegradable polymer materials, along with environmental safety, have mechanical properties that allow them producing products that do not carry significant loads during operation. We have shown that the creation of responsible products (machine parts) from biodegradable polymers requires an increase in their strength properties, which is achievable by creating composites based on them. It was found that the technological complexity of their manufacture and high cost are the limiting factors for the widespread use of biodegradable polymers at this stage.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 924
Author(s):  
Alexander B. Shcherbakov ◽  
Vladimir V. Reukov ◽  
Alexander V. Yakimansky ◽  
Elena L. Krasnopeeva ◽  
Olga S. Ivanova ◽  
...  

The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?


Author(s):  
Huai-Qing Chen ◽  
Wan Yang ◽  
Hua Zuo ◽  
Hua-Wei He ◽  
Ye-Jing Wang

Author(s):  
Subhasish Sahoo ◽  
Pooja Ghosh ◽  
Supratim Banerjee ◽  
Priyadarsi De

Sign in / Sign up

Export Citation Format

Share Document