scholarly journals Polymer Composite Fabrication Reinforced with Bamboo Fiber for Particle Board Product Raw Material Application

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4377
Author(s):  
Martijanti Martijanti ◽  
Sutarno Sutarno ◽  
Ariadne L. Juwono

Bamboo particles as reinforcement in composite materials are prospective to be applied to particleboard products in the industry. This study aimed to synthesize bamboo particle reinforced polymer composites as a substitute for particleboard products, which still use wood as a raw material. The parameters of the composite synthesis process were varied with powder sizes of 50, 100, and 250 mesh, each mesh with volume fractions of 10, 20, and 30%, matrix types of polyester and polypropylene, Tali Bamboo, and Haur Hejo Bamboo as reinforcements. Characterization included tensile strength, flexural strength, and morphology. Particleboard products were tested based on JIS A 5908-2003, including density testing, moisture content, thickness expansion after immersion in water, flexural strength in dry and wet conditions, bending Young’s modulus, and wood screw holding power. The results showed that the maximum flexural and tensile strength values of 91.03 MPa and 30.85 MPa, respectively, were found in polymer composites reinforced with Tali bamboo with the particle size of 250 mesh and volume fraction 30%. Particleboard made of polypropylene and polyester reinforced Tali Bamboo with a particle size of 250 mesh and a volume fraction of 30% composites meets the JIS A 5908-2003 standard.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5514-5531
Author(s):  
Elammaran Jayamani ◽  
Md. Rezaur Rahman ◽  
Deshan Anselam Benhur ◽  
Muhammad Khusairy Bin Bakri ◽  
Akshay Kakar ◽  
...  

This paper discusses mechanical, morphological, infrared spectral, and thermal properties of fly ash/sugarcane fiber reinforced epoxy polymer composites. Samples were prepared with and without the addition of 2 wt% of fly ash. Sugarcane fiber additions were varied from 0 wt% to 10 wt% (with an increment of 2 wt% for each sample), while the epoxy was used as a binder. A comparative study of these properties was completed on samples with and without the addition of fly ash in the composites. Based on the results obtained, the addition of 2 wt% of fly ash improved the tensile strength and hardness properties but reduced the flexural strength of the composites. Additions of fly ash reduced bubble or void formation in the composites, while toughening the composites and improving adhesion between the fiber and matrix. Samples with 4 w% of fiber and 2 wt% of fly ash composites showed high tensile strength and hardness properties, while 2 wt% of fiber composites showed high flexural strength.


2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-72-2-77
Author(s):  
Hassanein M. Nhoo ◽  
◽  
Raad. M. Fenjan ◽  
Ahmed A. Ayash ◽  
◽  
...  

The current paper deals with investigating the effect of two different fillers on the thermal and mechanical characteristics of epoxy-based composite. The filler used throughout the study are: charcoal and Pyrex, both of them are different in nature and have not been investigated thoroughly or even compared fairly in terms of their effect on polymer matrix. Further, they can be considered as a cheap filler, charcoal can be obtained from a simple pyrolysis process of plants (charcoal) and Pyrex waste can be collected easily. Both types are added to the selected matrix with volume percent ranged from 10 to 60 with increments of 10. To ensure a fair comparison, the particle size is fixed (is about 1.7 micrometer). The results showed that the epoxy thermal conductivity has enhanced by about two orders of magnitudes over the studied range of filler. In terms of mechanical properties, the charcoal improves the tensile strength about 84% at 60% volume fraction while the Pyrex effect is about 40% at the same filler level. On the contrast, the results of compressive strength do not show an appreciable improvement overall. It decreases by about 12% at 60% volume fraction of charcoal while increases about the same percent with Pyrex at the same filler level.


2019 ◽  
Vol 54 (10) ◽  
pp. 1259-1271 ◽  
Author(s):  
Medhat Elwan ◽  
A Fathy ◽  
A Wagih ◽  
A R S Essa ◽  
A Abu-Oqail ◽  
...  

In the present study, the aluminum (Al) 1050–FeTiO3 composite was fabricated through accumulative roll bonding process, and the resultant mechanical properties were evaluated at different deformation cycles at ambient temperature. The effect of the addition of FeTiO3 particle on the microstructural evolution and mechanical properties of the composite during accumulative roll bonding was investigated. The Al–2, 4, and 8 vol.% FeTiO3 composites were produced by accumulative roll bonding at room temperature. The results showed improvement in the dispersions of the particles with the increase in the number of the rolling cycles. In order to study the mechanical properties, tensile and hardness tests were applied. It was observed that hardness and tensile strength improve with increasing accumulative roll bonding cycles. The microhardness and tensile strength of the final composites are significantly improved as compared to those of original raw material Al 1050 and increase with increasing volume fraction of FeTiO3, reaching a maximum of ∼75 HV and ∼169 MPa for Al–8 vol.% FeTiO3 at seventh cycle, respectively.


2020 ◽  
Vol 1012 ◽  
pp. 14-19
Author(s):  
Michelle Souza Oliveira ◽  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Artur Camposo Pereira ◽  
Luana Cristyne da Cruz Demosthenes ◽  
...  

Composite materials are being extensively studied for ballistic armor. Their main advantage is connected to the possibility of deeply reducing weight and costs by maintaining high performances in terms of strength and security. Epoxy composites are reinforced with natural fibers which are replacing other synthetic reinforcement materials. Composites are prepared using polymers as matrix material because of ease of production with different reinforcements. The mechanical strength of the natural fiber reinforced polymer composites has been compared with synthetic fiber reinforced polymer composites and it is found that for achieving equivalent mechanical strength of the material, the volume fraction of the natural fiber should be much higher than synthetic fiber. This work being an experimental study on untreated “as received” fique fabric-reinforced epoxy composites, to demonstrate the potential of this renewable source of natural fiber for use in a number of applications.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


Author(s):  
S. Xu ◽  
O. Rezvanian ◽  
M. A. Zikry

A new finite element (FE) modeling method has been developed to investigate how the electrical-mechanical-thermal behavior of carbon nanotube (CNT)–reinforced polymer composites is affected by electron tunneling distances, volume fraction, and physically realistic tube aspect ratios. A representative CNT polymer composite conductive path was chosen from a percolation analysis to establish the three-dimensional (3D) computational finite-element (FE) approach. A specialized Maxwell FE formulation with a Fermi-based tunneling resistance was then used to obtain current density evolution for different CNT/polymer dispersions and tunneling distances. Analyses based on thermoelectrical and electrothermomechanical FE approaches were used to understand how CNT-epoxy composites behave under electrothermomechanical loading conditions.


Author(s):  
Nitin Garg ◽  
Gurudutt Chandrashekar ◽  
Farid Alisafaei ◽  
Chung-Souk Han

Abstract Microbeam bending and nano-indentation experiments illustrate that length scale-dependent elastic deformation can be significant in polymers at micron and submicron length scales. Such length scale effects in polymers should also affect the mechanical behavior of reinforced polymer composites, as particle sizes or diameters of fibers are typically in the micron range. Corresponding experiments on particle-reinforced polymer composites have shown increased stiffening with decreasing particle size at the same volume fraction. To examine a possible linkage between the size effects in neat polymers and polymer composites, a numerical study is pursued here. Based on a couple stress elasticity theory, a finite element approach for plane strain problems is applied to predict the mechanical behavior of fiber-reinforced epoxy composite materials at micrometer length scale. Numerical results show significant changes in the stress fields and illustrate that with a constant fiber volume fraction, the effective elastic modulus increases with decreasing fiber diameter. These results exhibit similar tendencies as in mechanical experiments of particle-reinforced polymer composites.


Sign in / Sign up

Export Citation Format

Share Document