STUDYING THE EFFECT OF DIFFERENT ADDITIVES ON THE THERMAL CONDUCTIVITY AND MECHANICAL CHARACTERISTICS OF EPOXY-BASED COMPOSITE MATERIALS

2021 ◽  
Vol 25 (Special) ◽  
pp. 2-72-2-77
Author(s):  
Hassanein M. Nhoo ◽  
◽  
Raad. M. Fenjan ◽  
Ahmed A. Ayash ◽  
◽  
...  

The current paper deals with investigating the effect of two different fillers on the thermal and mechanical characteristics of epoxy-based composite. The filler used throughout the study are: charcoal and Pyrex, both of them are different in nature and have not been investigated thoroughly or even compared fairly in terms of their effect on polymer matrix. Further, they can be considered as a cheap filler, charcoal can be obtained from a simple pyrolysis process of plants (charcoal) and Pyrex waste can be collected easily. Both types are added to the selected matrix with volume percent ranged from 10 to 60 with increments of 10. To ensure a fair comparison, the particle size is fixed (is about 1.7 micrometer). The results showed that the epoxy thermal conductivity has enhanced by about two orders of magnitudes over the studied range of filler. In terms of mechanical properties, the charcoal improves the tensile strength about 84% at 60% volume fraction while the Pyrex effect is about 40% at the same filler level. On the contrast, the results of compressive strength do not show an appreciable improvement overall. It decreases by about 12% at 60% volume fraction of charcoal while increases about the same percent with Pyrex at the same filler level.

2009 ◽  
Vol 87-88 ◽  
pp. 200-205 ◽  
Author(s):  
Yan He ◽  
Zhong Yin ◽  
Lian Xiang Ma ◽  
Jun Ping Song

Through measuring the thermal conductivities and tensile strength of nature rubbers filled with carbon black and comparing with each other, it is shown that the difference of carbon black particle size and the structure affects on the thermal conductivity and tensile strength of nature rubber. Thermal conductivities of carbon black-filled nature rubber are enhanced with the increase of volume fraction of filler; tensile strength of composite increases first and then decreases with the increase of carbon black volume fraction.


2014 ◽  
Vol 21 (4) ◽  
pp. 505-515 ◽  
Author(s):  
Aykut Canakci ◽  
Fazli Arslan ◽  
Temel Varol

AbstractIn this study, metal matrix composites of an aluminum alloy (AA2024) and B4C particles with volume fractions 3, 5, 7, and 10 vol% and with sizes 29 and 71 μm were produced using stir-casting technique. The effects of B4C particle content and size of boron carbide on the mechanical properties of the composites such as hardness, 0.2% yield strength, tensile strength, and fracture were investigated. Furthermore, the relation between particle content, microstructure, and particle distribution has been investigated. The hardness of the composites increased with increasing particle volume fraction and with decreasing particle size, although the tensile strength of the composites decreased with increasing particle volume fraction and with decreasing particle size. Scanning electron microscopic observations of the microstructures revealed that dispersion of the coarser sizes of B4C particles was more uniform while the finer particles led to agglomeration of the particles and porosity.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2018 ◽  
Vol 913 ◽  
pp. 49-54
Author(s):  
Jian Xin Wu ◽  
Chong Gao ◽  
Rui Yin Huang ◽  
Zhen Shan Liu ◽  
Pi Zhi Zhao

5083 aluminum alloy, due to moderate strength, good thermal conductivity and formability, is an ideal structural material for car production. Influence of cold rolling process on microstructures and mechanical properties of 5083 aluminum alloys is significant and research hotspots. In this paper, cold deformation and annealing processes on grains, tensile properties and anisotropies of 5083 alloy sheets were studied. Results showed that incomplete recrystallization occured on 5083 alloy sheets when annealing temperature was at 300°C. The degree of recrystallization increased slightly with the cold deformation raised from 30% to 50% and varied slightly with prolonged annealing time from 2h to 4h. Furthermore, fully recrystallization occurred on 5083 alloy sheets at the annealing temperature above 320°C. Tensile strength of 5083 alloy sheets reduced significantly when the annealing temperature was raised from 300°C to 320°C, while it varied slightly when the annealing temperature continued to rise to 380°C.


Sign in / Sign up

Export Citation Format

Share Document