scholarly journals A Comprehensive CFD Assessment of Wheat Flow in Wheat Conveying Cyclone Validation and Performance Analysis by Experimental Data

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Sajed Naiemi Dizajyekan ◽  
Gholamhossein Shahgholi ◽  
Adel Rezvanivand Fanaei ◽  
Vahid Rostampour ◽  
Vali Rasooli Sharabiani ◽  
...  

Cyclone is often used in the Industry due to its low maintenance costs, simple design, and ease of operation. This work presents both experimental and simulation evaluation on the effect of inlet velocity and mass flow rate on the performance of a wheat conveying cyclone. According to the great importance of the pressure drop and separation efficiency on the separation phenomenon in the cyclone, a comprehensive study has been conducted in this regard. A computational fluid dynamics (CFD) simulation was realized using a Reynolds stress turbulence model, and particle-air interactions were modeled using a discrete phase model. The result showed a good agreement between the measured value and CFD simulation on the pressure drop and tangential velocity with a maximum deviation of 6.8%. It was found that the separation efficiency increased with inlet velocity up to 16 m s−1 but decreased slightly at a velocity of 20 m s−1. The pressure drop increased proportionally with inlet velocity. However, optimum performance with the highest separation efficiency (99%) and acceptable pressure drop (416 Pa) was achieved at the inlet velocity of 16 m s−1 and mass flow rate of 0.01 kg s−1.

2017 ◽  
Vol 121 (1242) ◽  
pp. 1147-1161 ◽  
Author(s):  
A. Laura Cordes ◽  
B. Tim Pychynski ◽  
C. Corina Schwitzke ◽  
D. Hans-Jörg Bauer ◽  
A. Thiago P. de Carvalho ◽  
...  

ABSTRACTThe results of extensive experimental testing of an aero-engine air-oil separator are presented and discussed. The study focuses on the pressure loss of the system. Oil enters the device in the form of dispersed droplets. Subsequently, separation occurs by centrifuging larger droplets towards the outer walls and by film formation at the inner surface of a rotating porous material, namely an open-cell metal foam. The work described here is part of a study led jointly by the Karlsruhe Institute of Technology (KIT) and the University of Nottingham (UNott) within a recent EU project.The goal of the research is to increase the separation efficiency to mitigate oil consumption and emissions, while keeping the pressure loss as low as possible. The aim is to determine the influencing factors on pressure loss and separation efficiency. With this knowledge, a correlation can eventually be derived. Experiments were conducted for three different separator configurations, one without a metal foam and two with metal foams of different pore sizes. For each configuration, a variety of engine-like conditions of air mass flow rate, rotational speed and droplet size was investigated. The experimental results were used to validate and improve the numerical modelling.Results for the pressure drop and its dependencies on air mass flow rate and the rotational speed were analysed. It is shown that the swirling flow and the dissipation of angular momentum are the most important contributors to the pressure drop, besides the losses due to friction and dissipation caused by the flow passing the metal foam. It was found that the ratio of the rotor speed and the tangential velocity of the fluid is an important parameter to describe the influence of rotation on the pressure loss. Contrary to expectations, the pressure loss is not necessarily increased with a metal foam installed.


2014 ◽  
Vol 22 (02) ◽  
pp. 1440002 ◽  
Author(s):  
QING HAN ◽  
CHI ZHANG ◽  
JIANGPING CHEN

In order to obtain a higher heat transfer coefficient of refrigerant flow, the diameter of tubes tends to be smaller and smaller, which leads to large pressure drop of the refrigerant flow. Therefore, multiple numbers of parallel refrigerant passages are employed by using distributors. It is very important to distribute the two-phase refrigerant evenly into each tube, otherwise the thermal performance is significantly deteriorated. The performance reduction by flow mal-distribution could be as large as 20–25%. The goal of this paper is to investigate the influence of different configurations to the performance of refrigerant distributors by experiments and computational fluid dynamic code. The effects of mass flow rate and quality of distributor inlet on the characteristics were also quantitatively considered. In this study, an experiment test rig was built to measure the mass flow rate and quality of four circuits after using distributors under different conditions respectively. Refrigerant R410A was used as working fluids. Three classic types (jet, cyclone and reservoir) of distributors with four paths were manufactured and tested under relevant operating conditions. The inlet temperature was 4°C, mass flow rate range was 50–100 kg/h and the quality range was 0.1–0.3. Experimental results show that the maximum deviation of mass flow rate for jet, cyclone and reservoir type is 13.0%, 21.6% and 10.9%, respectively; the maximum deviation of quality was 0.08, 0.10 and 0.05, respectively. In addition, the standard deviation of mass flow rate and quality over four paths were selected to evaluate the performance of different type distributors. The results show that the performance of jet and reservoir are better than cyclone. The flow behavior of two-phase refrigerant such as phase distribution and separation phenomena was studied by Computational Fluid Dynamics (CFD). The flow pattern of inlet for R410A was investigated and used in the present model. The results in the present model show good and reasonable approximation with experimental data which validate the CFD simulation. CFD simulation analysis elucidates the mechanics which shows how the configuration and operation conditions affect the refrigerant distribution.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Author(s):  
E. de la Rosa Blanco ◽  
H. P. Hodson ◽  
R. Vazquez

This work describes the effect that the injection of leakage flow from a cavity into the mainstream has on the endwall flows and their interaction with a large pressure surface separation bubble in a low-pressure turbine. The effect of a step in hub diameter ahead of the blade row is also simulated. The blade profile under consideration is a typical design of modern low-pressure turbines. The tests are conducted in a low speed linear cascade. These are complemented by numerical simulations. Two different step geometries are investigated, i.e., a backward-facing step and a forward-facing step. The leakage tangential velocity and the leakage mass flow rate are also modified. It was found that the injection of leakage mass flow gives rise to a strengthening of the endwall flows independently of the leakage mass flow rate and the leakage tangential velocity. The experimental results have shown that below a critical value of the leakage tangential velocity, the net mixed-out endwall losses are not significantly altered by a change in the leakage tangential velocity. For these cases, the effect of the leakage mass flow is confined to the wall, as the inlet endwall boundary layer is pushed further away from the wall by the leakage flow. However, for values of the leakage tangential velocity around 100% of the wheelspeed, there is a large increase in losses due to a stronger interaction between the endwall flows and the leakage mass flow. This gives rise to a change in the endwall flows structure. In all cases, the presence of a forward-facing step produces a strengthening of the endwall flows and an increase of the net mixed-out endwall losses when compared with a backward-facing step. This is because of a strong interaction with the pressure surface separation bubble.


2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


2016 ◽  
Vol 836 ◽  
pp. 102-108
Author(s):  
Mirmanto ◽  
Emmy Dyah Sulistyowati ◽  
I Ketut Okariawan

In the rainy season, in tropical countries, to dry stuffs is difficult. Using electrical power or fossil energy is an expensive way. Therefore, it is wise to utilize heat waste. A device that can be used for this purpose is called radiator. The effect of mass flow rate on pressure drop and heat transfer for a dryer room radiator have been experimentally investigated. The room model size was 1000 mm x 1000 mm x 1000 mm made of plywood and the overall radiator dimension was 360 mm x 220 mm x 50 mm made of copper pipes with aluminium fins. Three mass flow rates were investigated namely 12.5 g/s, 14 g/s and 16.5 g/s. The water temperature at the entrance was increased gradually and then kept at 80°C. The maximum temperature reached in the dryer room was 50°C which was at the point just above the radiator. The effect of the mass flow rate on the room temperature was insignificant, while the effect on the pressure drop was significant. Moreover, the pressure drop decreased as the inlet temperature increased. In general, the radiator is recommended to be used as the heat source in a dryer room.


Author(s):  
Prithvi Raj Kokkula ◽  
Shashank Bhojappa ◽  
Selin Arslan ◽  
Badih A. Jawad

Formula SAE is a student competition organized by SAE International. The team of students design, manufacture and race a car. Restrictions are imposed by the Formula SAE rules committee to restrict the air flow into the intake manifold by putting a single restrictor of 20 mm. This rule limits the maximum engine power by reducing the mass flow rate flowing to the engine. The pull is greater at higher rpms and the pressure created inside the cylinder is low. As the diameter of the flow path is reduced, the cross sectional area for flow reduces. For cars running at low rpm when the engine requires less air, the reduction in area is compensated by accelerated flow of air through the restrictor. Since this is for racing purpose cars here are designed to run at very high rpms where the flow at the throat section reach sonic velocities. Due to these restrictions the teams are challenged to come up with improved restrictor designs that allow maximum pressure drop across the restrictor’s inlet and outlet. The design considered for optimizing a flow restrictor is a venturi type having 20 mm restriction between the inlet and the outlet complying with the rules set by Formula SAE committee. The primary objective of this work is to optimize the flow restriction device that achieves maximum mass flow and minimum pull from the engine. This implies the pressure difference created due to the cylinder pressure and the atmospheric pressure at the inlet should be minimum. An optimum flow restrictor is designed by conducting analysis on various converging and diverging angles and coming up with an optimum value. Venturi type is a tubular pipe with varying diameter along its length, through which the fluid flows. Law of governing fluid dynamics states that the “Velocity of the fluid increases as it passes through the constriction to satisfy the principle of continuity”. An equation can be derived from the combination of Bernoulli’s equation and Continuity equation for the pressure drop due to venturi effect. [1]. A Computational Fluid Dynamics (CFD) tool is used to calculate the minimum pressure drop across the restrictor by running a series of analysis on various converging and diverging angles and calculating the pressure drop. As a result, an optimum air flow restrictor is achieved that maximizes the mass flow rate and minimizes the engine pull.


Author(s):  
Mohammad Reza Shirzadi ◽  
Hossein Saeidi

In this article aerodynamic effects of tip clearance on a heavy duty axial turbine are studied. Three different tip clearances are considered for each rotor. For simplicity, a simple tip profile is assumed and cooling air is not modeled. Aerodynamic behavior of all stages is studied in terms of polytropic efficiency, leakage mass flow, secondary and total losses, penetration length, and total mass flow rate for different pressure ratios. Also three well established correlations of tip clearance loss are compared with CFD results to obtain the best model for performance calculation of such a large-scale turbine. The steady states, viscous and compressible flow governing equations representing the flow field with k-epsilon turbulence model are solved using commercial code ANSYS CFX.12. Useful data are presented to predict the variation of efficiency of each individual rotor, as well as entire turbine, as a function of relative tip gap (k/h). This information may be useable in design and troubleshooting. According to the results, even though pressure drop in rear stages across tip gap is lower than pressure drop in front stages, leakage mass flow rate is considerably high for this LP stages. Consequently, tip clearance losses of rear stages have significant effect on the entire turbine efficiency.


Author(s):  
Racheet Matai ◽  
Savas Yavuzkurt

The performance of an industrial fan was simulated using CFD and results were compared with the experimental data. The fan is used to cool a row of resistor networks which dissipate excess energy generated by regenerative power in an inverter application. It has a diameter of 24 inches (0.6096m) and rotates at different speeds ranging from 2500 to 3900 RPM depending on the requirements. CFD simulation results were also verified by simulating performance of the same fan at different speeds and comparing the results with what was expected from fan affinity laws. The CFD results matched almost exactly (with ∼0.2% difference for pressure at a given flow rate) with the performance being predicted by the affinity laws. The effect of variation of different parameters such as the blade length, number of blades, and blade chord length was studied. Increasing the blade length at the same RPM increased the mass flow rate (by ∼17%) for the same pressure. Increasing the chord length while keeping the same number of blades, at a given RPM, made the performance curve (pressure versus flow rate, i.e. PV curve) steeper and blades stalled at a higher mass flow rate (8.77 kg/sec compared to the previous 8.44 kg/sec). For the same total blade surface area, less number of blades with longer chords stalled at lower mass flow rates (9.22 kg/sec for a 33% shorter chord and 36 blades compared to 8.3 kg/sec for the original rotor which had 24 blades).


Author(s):  
Jingya Li ◽  
Xiaoying Zhang

The passive cooling system (PCCS) for reactor containment is a security system that can be used to cool the atmosphere and reduce pressure inside of containment in case of temperature and pressure increase caused by vapor injection, which requires no external power because it works only with natural forces. However, as the driving forces from natural physical phenomena are of low amplitude, uncertainties and instabilities in the physical process can cause failure of the system. This article aims to establish a CFD simulation model for the Passive Containment Cooling System of 1000MW PWR using Code_Saturne and FLUENT software. The comparison of 4 different models based respectively on mixture model, COPAIN test, Uchida correlation and Chilton-Colburn analogy which simulate the condensing effect and the improvement of source code are based on a 3D simulation of PCCS system. To simulate the thermal-hydraulic condition in the containment after LOCA accident caused by a double-ended main pipe rupture, a high temperature vapor with the given mass flow rate are supposed to be the source of energy and mass into containment. Meanwhile the surface of three condensing island applies the wall condensation model. The simulation results show similar transient process obtained with the 4 models, while the difference between the transient simulation and the steady-state analysis of three models is less than 3%. The large mass flow rate of water loss status inside the containment cause a high flow rate of vapor which could be uniformly mixed with air in a short time. For the self-condensing efficiency of 3 groups of PCCS system, the non-centrosymmetric injection position resulting that the condensing efficiency is slightly higher for the two heat exchanger groups nearby. During the first 2400s of simulation time, more than 75.69% of the vapor is condensed, indicating that for the occurrence of condensation at the wall mainly driven by natural convection, the effect of thermodynamic siphon could improve the flow of gas mixture inside the tubes when the velocity of mixture is not large enough, so that the vapor could smoothly enter the tube and reach the internal cooling surface then to be condensed. Besides, PCCS ensure the containment internal pressure maintained below 2 bar and the temperature maintained below 380K during 3600s.


Sign in / Sign up

Export Citation Format

Share Document