scholarly journals Adsorption Process and Properties Analyses of a Pure Magadiite and a Modified Magadiite on Rhodamine-B from an Aqueous Solution

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 565
Author(s):  
Mingliang Ge ◽  
Zhuangzhuang Xi ◽  
Caiping Zhu ◽  
Guodong Liang ◽  
Yinye Yang ◽  
...  

The result of an adsorption experiment indicated that the pure magadiite (MAG) and the modified MAG via cetyltrimethylammonium-bromide (CTAB-MAG) possessed pronounced affinity to the Rhodamine-B (Rh-B) dye molecules. CTAB-MAG was synthesized with an ion-exchange method between MAG and cetyltrimethylammonium-bromide (CTAB) in an aqueous solution. The adsorption capacities of CTAB-MAG and MAG on Rh-B were 67.19 mg/g and 48.13 mg/g, respectively; while the pH and the time were 7 and 60 min, respectively; however, the initial concentration of Rh-B was 100 mg/L, and adsorbent dosage was 1 g/L. Whereas, the adsorption capacity of CTAB-MAG was increased by 40% over MAG which indicated that CTAB-MAG can be used as an efficient low-cost adsorbent. Adsorption kinetics were consistent with the pseudo-second-order kinetic equation; the adsorption processes were dominated by film diffusion process which belonged to monomolecular layer adsorption.

2012 ◽  
Vol 430-432 ◽  
pp. 197-201
Author(s):  
Feng Yu Li ◽  
Sheng Hua Zhang ◽  
Jin Yi Chen

Pyromellitic dianhydride(PMDA)- modified grain sorghum stalk was used as a novel low-cost adsorbent to remove cationic dye methylene blue(MB) from aqueous solution. Bath studies were carried out to investigate the effects of pH and retention time on the adsorption of MB. The adsorption process could obtain >98% removal percentage within 30 minutes as the MB concentration was at 200 and 300 mg/L. And for 400 mg/L MB, 99% was removed in 6 hrs. The kinetics study showed that the adsorption processes followed the pseudo-second-order kinetic model, which confirming that the sorption rate is controlled by chemical adsorption. Equilibrium isotherms were analyzed by the Langmuir and Freundlich models. Langmuir model can be fitted better than Freundlich with maximum monolayer adsorption capacity of 568.18 mg/g for MB.


2014 ◽  
Vol 955-959 ◽  
pp. 610-617
Author(s):  
Wang Bin Cheng ◽  
Jie Ding ◽  
Xian Shu Liu ◽  
Chun Miao Liu

In this paper, poly aluminium chloride (PAC) was used to remove phenol and aniline from the aqueous phase .The adsorption properties of this process was investigated by zeta potential measurement, infrared spectroscopy and the analysis of pollutants structure and adsorption kinetic. The results described that not only electrostatic attraction but hydrogen adsorption were the main mechanism of both the phenol adsorption and the aniline adsorption. The pseudo second-order kinetic equation could best describe these two adsorption kinetics. The calculated activated energy of adsorption processes of phenol and aniline were 47.2KJ/mol and 44KJ/mol, respectively, which indicated that the adsorption process was chemisorption. Friedrich model was fitter to describe the adsorption isotherm of these two adsorption processes.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2015 ◽  
Vol 72 (9) ◽  
pp. 1505-1515 ◽  
Author(s):  
H. Asnaoui ◽  
A. Laaziri ◽  
M. Khalis

Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.


2020 ◽  
Vol 49 (6) ◽  
pp. 457-464
Author(s):  
Zahra Shamsizadeh ◽  
Mohammad Hassan Ehrampoush ◽  
Zahra Dehghani Firouzabadi ◽  
Tahereh Jasemi Zad ◽  
Fereshteh Molavi ◽  
...  

Purpose The purpose of this study was to the synthesis of Fe3O4@SiO2 nanocomposites and using it as an adsorbent for removal of diazinon from aqueous solutions. Structural characteristics of the synthesized magnetic nanocomposite were described by Fourier transform infrared spectroscopy and scanning electron microscopy. Design/methodology/approach The effects of different parameters including pH (2-10), contact time (1-180 min), adsorbent dosage (100-2000 mg L−1) and initial diazinon concentration (0.5–20 mg L−1) on the removal processes were studied. Finally, isotherm and kinetic and of adsorption process of diazinon onto Fe3O4@SiO2 nanocomposites were investigated. Findings The maximum removal efficiency of diazinon (96%) was found at 180 min with 1000 mg L−1 adsorbent dosage using 0.5 mg L−1 diazinon concentration at pH = 7. The experimental results revealed that data were best fit with the pseudo-second-order kinetic model (R2 = 0.971) and the adsorption capacity was 10.90 mg g−1. The adsorption isotherm was accordant to Langmuir isotherm. Originality/value In the present study, the magnetic nanocomposites were synthesized and used as an absorbent for the removal of diazinon. The developed method had advantages such as the good ability of Fe3O4@SiO2 nanocomposites to remove diazinon from aqueous solution and the magnetic separation of this absorbent that make it recoverable nanocomposite. The other advantages of these nanocomposites are rapidity, simplicity and relatively low cost.


2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Sayed S. Metwally ◽  
Hoda E. Rizk ◽  
Mona S. Gasser

AbstractGreen composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 548 ◽  
Author(s):  
Ying Pei ◽  
Gaoqiang Xu ◽  
Xiao Wu ◽  
Keyong Tang ◽  
Guozhen Wang

Tannin/cellulose microspheres (T/C) were successfully prepared via a facile homogeneous reaction in a water/oil (W/O) emulsion for removing Pb(II) ions from aqueous solution. The structure of the microspheres was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and a zeta potential test. The effects of pH, adsorbent dosage, contact time, and temperature on adsorption ability were investigated. The results showed that T/C microspheres could combine Pb(II)ions via electrostatic attractions and physical adsorption. Adsorption kinetics could be better described by the pseudo-second-order kinetic model. The adsorption behaviors were in agreement with the Langmuir adsorption isotherm model with a fitting correlation coefficient of 0.9992. The maximum adsorption capacity was 23.75 mg/g from the Langmuir isotherm evaluation at 308K with an initial pH of 5. The results suggested that tannin/cellulose microspheres could be a low-cost and effective adsorbent for removing Pb(II) ions from aqueous solution.


2011 ◽  
Vol 130-134 ◽  
pp. 829-832
Author(s):  
Jin Xia Mu ◽  
Ming Juan Shi ◽  
Xiao Ying Wu ◽  
Jin Ye Li

The adsorption of methylene blue (MB) from aqueous solution using a low-cost adsorbent, ginkgo leaf powder, has been studied. The equilibrium data were fitted to Langmuir and Freundlich isotherms and the equilibrium adsorption was best described by the Langmuir isotherm model with maximum monolayer adsorption capacities found to be 39 mg/g. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models, and the sorption kinetics was found to follow a pseudo-second order kinetic model. Ginkgo leaf appears as a prospective adsorbent for the removal of methylene blue from aqueous solution.


2015 ◽  
Vol 72 (7) ◽  
pp. 1243-1249 ◽  
Author(s):  
Yan Liu ◽  
Kaige Liu ◽  
Lin Zhang ◽  
Zhaowen Zhang

Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.


Sign in / Sign up

Export Citation Format

Share Document