scholarly journals Removing Pb(II) Ions from Aqueous Solution by a Promising Absorbent of Tannin-Immobilized Cellulose Microspheres

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 548 ◽  
Author(s):  
Ying Pei ◽  
Gaoqiang Xu ◽  
Xiao Wu ◽  
Keyong Tang ◽  
Guozhen Wang

Tannin/cellulose microspheres (T/C) were successfully prepared via a facile homogeneous reaction in a water/oil (W/O) emulsion for removing Pb(II) ions from aqueous solution. The structure of the microspheres was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and a zeta potential test. The effects of pH, adsorbent dosage, contact time, and temperature on adsorption ability were investigated. The results showed that T/C microspheres could combine Pb(II)ions via electrostatic attractions and physical adsorption. Adsorption kinetics could be better described by the pseudo-second-order kinetic model. The adsorption behaviors were in agreement with the Langmuir adsorption isotherm model with a fitting correlation coefficient of 0.9992. The maximum adsorption capacity was 23.75 mg/g from the Langmuir isotherm evaluation at 308K with an initial pH of 5. The results suggested that tannin/cellulose microspheres could be a low-cost and effective adsorbent for removing Pb(II) ions from aqueous solution.

2012 ◽  
Vol 430-432 ◽  
pp. 197-201
Author(s):  
Feng Yu Li ◽  
Sheng Hua Zhang ◽  
Jin Yi Chen

Pyromellitic dianhydride(PMDA)- modified grain sorghum stalk was used as a novel low-cost adsorbent to remove cationic dye methylene blue(MB) from aqueous solution. Bath studies were carried out to investigate the effects of pH and retention time on the adsorption of MB. The adsorption process could obtain >98% removal percentage within 30 minutes as the MB concentration was at 200 and 300 mg/L. And for 400 mg/L MB, 99% was removed in 6 hrs. The kinetics study showed that the adsorption processes followed the pseudo-second-order kinetic model, which confirming that the sorption rate is controlled by chemical adsorption. Equilibrium isotherms were analyzed by the Langmuir and Freundlich models. Langmuir model can be fitted better than Freundlich with maximum monolayer adsorption capacity of 568.18 mg/g for MB.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2009 ◽  
Vol 610-613 ◽  
pp. 65-68 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin

Konjac glucomannan (KGM) was converted into water insoluble konjac glucomannan (WIKGM) by treating with NaOH through completely deacetylated reaction. Adsorption study was carried out for the adsorption of Pb2+ from aqueous solution using water insoluble konjac glucomannan. The influences of pH, contact time, temperature and initial Pb2+ concentration on the absorbent were studied. Results of kinetic data showed that the Pb2+ adsorption rate was fast and good correlation coefficients were obtained for the pseudo second-order kinetic model. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacity of 9.18 mg/g on WIKGM at 25°C.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Marius Gheju ◽  
Sorina Boran

Abstract In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


Author(s):  
Ayben Polat ◽  
Sukru Aslan

The sorption of Cu2+ ions from aqueous solutions by eggshell was investigated in a batch experimental system with respect to the temperature, initial Cu2+ concentrations, pH, and biosorbent doses. The adsorption equilibrium was well described by the Langmuir isotherm model with the maximum adsorption capacity of 5.05 mg Cu2+/g eggshell at 25 °C. The value of qe increased with increasing the temperature while also increases the release of Ca2+ and HCO−3 ions from the eggshell. The highest sorption of Cu onto the waste eggshell was determined at the initial pH value of 4.0. The results confirming that the adsorption reaction of Cu2+ on the eggshell was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second-order kinetics, intraparticle diffusion, and Elovich on the sorption rate demonstrated that the system was best described by the pseudo second-order kinetic model.


2009 ◽  
Vol 27 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Laura Bulgariu ◽  
Dumitru Bulgariu ◽  
Theodor Malutan ◽  
Matei Macoveanu

The adsorption of lead(II) ions from aqueous solution onto lignin was investigated in this study. Thus, the influence of the initial solution pH, the lignin dosage, the initial Pb(II) ion concentration and the contact time were investigated at room temperature (19 ± 0.5 °C) in a batch system. Adsorption equilibrium was approached within 30 min. The adsorption kinetic data could be well described by the pseudo-second-order kinetic model, while the equilibrium data were well fitted using the Langmuir isotherm model. A maximum adsorption capacity of 32.36 mg/g was observed. The results of this study indicate that lignin has the potential to become an effective and economical adsorbent for the removal of Pb(II) ions from industrial wastewaters.


2011 ◽  
Vol 322 ◽  
pp. 436-439 ◽  
Author(s):  
Xi Chan Zhang ◽  
Xing Guang Li

Present study deals with the evaluation of biosorptive removal of copper byFlavobacterium sp.Experiments have been carried out to find the effect of various parameters such as initial pH, contact time and initial metal ion concentration. Adsorption equilibrium studies showed that Cu(II) adsorption data followed the Langmuir model, the maximum binding capacity ofwas 55.20 mg/g at pH 6.0. Kinetics of copper biosorption by Flavobacterium sp. biomass is better described by pseudo second order kinetic model. It was also clearly observed that The present study indicated thatFlavobacterium sp.biomass may be used as a cost and effective biosorbent for the removal of Cu(II) ions from wastewater.


2020 ◽  
Vol 49 (6) ◽  
pp. 457-464
Author(s):  
Zahra Shamsizadeh ◽  
Mohammad Hassan Ehrampoush ◽  
Zahra Dehghani Firouzabadi ◽  
Tahereh Jasemi Zad ◽  
Fereshteh Molavi ◽  
...  

Purpose The purpose of this study was to the synthesis of Fe3O4@SiO2 nanocomposites and using it as an adsorbent for removal of diazinon from aqueous solutions. Structural characteristics of the synthesized magnetic nanocomposite were described by Fourier transform infrared spectroscopy and scanning electron microscopy. Design/methodology/approach The effects of different parameters including pH (2-10), contact time (1-180 min), adsorbent dosage (100-2000 mg L−1) and initial diazinon concentration (0.5–20 mg L−1) on the removal processes were studied. Finally, isotherm and kinetic and of adsorption process of diazinon onto Fe3O4@SiO2 nanocomposites were investigated. Findings The maximum removal efficiency of diazinon (96%) was found at 180 min with 1000 mg L−1 adsorbent dosage using 0.5 mg L−1 diazinon concentration at pH = 7. The experimental results revealed that data were best fit with the pseudo-second-order kinetic model (R2 = 0.971) and the adsorption capacity was 10.90 mg g−1. The adsorption isotherm was accordant to Langmuir isotherm. Originality/value In the present study, the magnetic nanocomposites were synthesized and used as an absorbent for the removal of diazinon. The developed method had advantages such as the good ability of Fe3O4@SiO2 nanocomposites to remove diazinon from aqueous solution and the magnetic separation of this absorbent that make it recoverable nanocomposite. The other advantages of these nanocomposites are rapidity, simplicity and relatively low cost.


2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Sayed S. Metwally ◽  
Hoda E. Rizk ◽  
Mona S. Gasser

AbstractGreen composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO


Sign in / Sign up

Export Citation Format

Share Document