scholarly journals Effect of Ammonia Activation and Chemical Vapor Deposition on the Physicochemical Structure of Activated Carbons for CO2 Adsorption

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 801
Author(s):  
Liu ◽  
Li ◽  
Dong ◽  
Li ◽  
Feng ◽  
...  

Focusing on the bottlenecks of traditional physical activation method for the preparation of activated carbons (ACs), we established a simple and scalable method to control the physicochemical structure of ACs and study their CO2 adsorption performance. The preparation is achieved by ammonia activation at different volume fractions of ammonia in the mixture (10%, 25%, 50%, 75%, and 100%) to introduce the nitrogen-containing functional groups and form the original pores and subsequent chemical vapor deposition (CVD) at different deposition times (30, 60, 90, and 120 min) to further adjust the pore structure. The nitrogen content of ACs-0.1/0.25/0.5/0.75/1 increases gradually from 2.11% to 8.84% with the increase of ammonia ratio in the mixture from 10% to 75% and then decreases to 3.02% in the process of pure ammonia activation (100%), during which the relative content of pyridinium nitrogen (N-6), pyrrolidine (N-5), and graphite nitrogen (N-Q) increase sequentially but nitrogen oxygen structure (N-O) increase continuously. In addition, ACs-0.5 and ACs-0.75, with a relatively high nitrogen content (6.37% and 8.84%) and SBET value (1048.65 m2/g and 814.36 m2/g), are selected as typical samples for subsequent CVD. In the stage of CVD, ACs-0.5-60 and ACs-0.75-90, with high SBET (1897.25 and 1971.57 m2/g) value and an appropriate pore-size distribution between 0.5 and 0.8 nm, can be obtained with the extension of deposition time from 60 to 90 min. The results of CO2 adsorption test indicate that an adsorption capacity of ACs-0.75-90, at 800 mmHg, is the largest (6.87 mmol/g) out of all the tested samples. In addition, the comparison of CO2 adsorption performance of tested samples with different nitrogen content and pore structure indicates that the effect of nitrogen content seems to be more pronounced in this work.

1993 ◽  
Vol 303 ◽  
Author(s):  
P.K. Mclarty ◽  
W.L. Hill ◽  
X.L Xu ◽  
J.J. Wortman ◽  
G.S. Harris

ABSTRACTThin silicon oxynitride (Si-O-N) films have been deposited using low pressure rapid thermal chemical vapor deposition (RTCVD) with silane (SiH4), nitrous oxide (N2O), and ammonia (NH3) as the reactive gases. Structural analysis coupled with a study of deposition conditions indicate that an increase in NH3/N2O flow rate ratios leads to an increased N/O atomic ratio and a decreased Si-O-N deposition rate. Thin film (55-75A) polySi/Si-N-O/Si capacitors and transistors were fabricated for NH3/N2O flow rate ratios from 20% to 100%. Some of the films were subjected to a post deposition anneal at 950°C for 15 seconds in both argon and oxygen. Capacitance voltage measurements indicate a mid-gap interface trap density of ≤ 6 × 1010 eV−1cm−2 for all the films independent of both nitrogen content and post deposition annealing conditions. The transconductance was studied as a function of NH3/N2O flow rate ratio and decreasing peak gm values but improved high field degradation was observed for increased nitrogen content. This is consistent with previous work on nitrided oxides and suggests that the films are under tensile stress. Hot carrier stress at maximum substrate current was performed with the Si-O-N films displaying larger threshold voltage shifts when compared to furnace SiO2 indicating the possible existence of hydrogen related traps.


Langmuir ◽  
2004 ◽  
Vol 20 (23) ◽  
pp. 10288-10295 ◽  
Author(s):  
Jarkko Hukkamäki ◽  
Sari Suvanto ◽  
Mika Suvanto ◽  
Tuula T. Pakkanen

Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-885-Pr3-892 ◽  
Author(s):  
N. Popovska ◽  
S. Schmidt ◽  
E. Edelmann ◽  
V. K. Wunder ◽  
H. Gerhard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document