scholarly journals Process of Natural Gas Explosion in Linked Vessels with Three Structures Obtained Using Numerical Simulation

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 52 ◽  
Author(s):  
Qiuhong Wang ◽  
Yilin Sun ◽  
Xin Li ◽  
Chi-Min Shu ◽  
Zhirong Wang ◽  
...  

Combinations of spherical vessels and pipes are frequently employed in industries. Scholars have primarily studied gas explosions in closed vessels and pipes. However, knowledge of combined spherical vessel and pipe systems is limited. Therefore, a flame acceleration simulator was implemented with computational fluid dynamics software and was employed to conduct natural gas explosions in three structures, including a single spherical vessel, a single spherical vessel with a pipe connected to it, and a big spherical vessel connected to a small spherical vessel with a pipe. These simulations reflected physical experiments conducted by at Nanjing Tech University. By changing the sizes of vessels, lengths of pipes, and ignition positions in linked vessels, we obtained relevant laws for the time, pressure, temperature, and concentrations of combustion products. Moreover, the processes of natural gas explosions in different structures were obtained from simulation results. Simulation results agreed strongly with corresponding experimental data, validating the reliability of simulation.

2019 ◽  
Vol 12 (1) ◽  
pp. 153 ◽  
Author(s):  
Zexu Li ◽  
Jiansong Wu ◽  
Mingyu Liu ◽  
Yuntao Li ◽  
Qiuju Ma

With the rapid urbanization in China, directly buried municipal pipelines have been gradually replaced by urban utility tunnels due to a serious shortage of urban underground spaces and weak disaster prevention of traditional municipal pipelines. The urban utility tunnels normally contain electricity pipelines, natural gas pipelines, heat pipelines, sewer pipelines, etc. If a natural gas pipeline leaks, a fire and explosion might occur and lead to serious consequences. In this study, the characteristics of gas explosion in a natural gas compartment of urban utility tunnel are investigated based on FLACS (Flame Acceleration Simulator) simulations. The results revealed that the flame profile undergoes two unstable flame stages. When the ignition position is set at the middle area (100.25, 1.2, 1.4 m) of the 200 m-long natural gas compartment, the maximum overpressure of the gas explosion in the 200 m-long natural gas compartment is 25.17 bar, which is the largest maximum overpressure under all gas explosion simulation setups. It is also found that the length of the natural gas compartment and different ignition positions have slight effects on the maximum overpressure. This study could provide technical support for structural strength design and division of the fireproofing area of the natural gas compartment in the utility tunnel, which is of great significance to improve urban safety during sustainable development.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Pang ◽  
Qianran Hu ◽  
Kai Yang

Purpose The purpose of this paper is to ascertain the harm to personnel and equipment caused by an external explosion during natural gas explosion venting. The external explosion characteristics induced by the indoor natural gas explosion are the focal points of the investigation. Design/methodology/approach Computational fluid dynamics technology was used to investigate the large-scale explosion venting process of natural gas in a 6 × 3 × 2.5 m room, and the characteristics of external explosion under different scaled vent size (Kv = Av/V2/3, 0.05, 0.08, 0.13, 0.18) were numerically analyzed. Findings When Kv = 0.08, the length and duration of the explosion fireball are 13.39 and 450 ms, respectively, which significantly expands the degree and range of high-temperature hazards. The suitable flow-field structure causes the external explosion overpressure to be more than twice that indoors, i.e. the natural gas explosion venting overpressure may be considerably more hazardous in an outdoor environment than inside a room. A specific range for the Kv can promote the superposition of outdoor rupture waves and explosion shock waves, thereby creating a new overpressure hazard. Originality/value Little attention has been devoted to investigating systematically the external explosion hazards. Based on the numerical simulation and the analysis, the external explosion characteristics induced by the indoor large-scale gas explosion were obtained. The research results are theoretically significant for mitigating the effects of external gas explosions on personnel and equipment.


SIMULATION ◽  
2018 ◽  
Vol 94 (9) ◽  
pp. 849-858
Author(s):  
C Yan ◽  
ZR Wang ◽  
F Jiao ◽  
C Ma

This paper presents a simulation study on the methane–air mixture explosions through using the eddy-dissipation concept (EDC) model in FLUENT. The aims are to investigate the structure effects of methane–air mixture explosions in a spherical vessel, cylindrical vessel and different systems of cylindrical vessels connected with pipe. Meanwhile, in order to study the characteristics of methane-air mixture explosions in the linked vessels, changes of flame temperature and airflow velocity in the linked vessels are simulated and analyzed. The results suggest that the effect of structural changes of a single vessel on the gas explosion intensity is clear, and the explosion intensity of a spherical vessel is greater than that of a cylindrical vessel. The simulation results of different structural forms of a cylindrical vessel connected with pipelines show that the time to reach the peak value of explosion pressure is the shortest in the linked vessels, and the explosion pressure rising rate is highest at the vessel’s center. For the linked vessels, after ignition, the airflow ahead of the flame propagates to the secondary vessel, and the maximum airflow velocity of every monitoring point in the linked vessels increases. The detonation occurs when the flame propagates to the secondary vessel, which leads to a severe secondary explosion in the secondary vessel. The studies can provide an important reference for the safe design of industrial vessels.


Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.


Author(s):  
Riccardo Caponetto ◽  
Salvatore Graziani ◽  
Emanuele Murgano

AbstractIn the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data, confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Sign in / Sign up

Export Citation Format

Share Document