scholarly journals Formulation and Functional Properties of Whey Protein-Based Tissue Adhesive Using Totarol as an Antimicrobial Agent

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Yifan Hou ◽  
Xiaonan Zhang ◽  
Cuina Wang ◽  
Mingruo Guo

Tissue adhesives have been widely used in surgical procedures. Compared to traditional surgical sutures, tissue adhesives provide fast bonding experiences and full closure of wounds. However, current tissue adhesives are mostly fossil-based synthetic products. Therefore, it is of great significance to explore the use of natural materials in tissue adhesives. Whey is a low-end byproduct of cheese manufacturing. Whey protein, a group of small globular proteins, can exhibit adhesive properties if their structures are modified by physical or chemical means. The objectives of this study were to investigate the functional and structural properties of whey protein-based tissue adhesive, along with the antibacterial effect of totarol, a natural antimicrobial agent. Whey protein isolate (WPI) solutions (25%–33% protein) were mixed with different levels (0.1%–0.3% w/w) of totarol. The mixtures were analyzed for total plate count and yeast and mold count. The lap-shear bonding strength was tested after the WPI-totarol solutions were mixed with a crosslinking agent, glutaraldehyde (GTA). The lap-shear bonding strength of the tissue adhesive was about 20 kPa, which is comparable to that of a commercial BioGlue®. The microstructures of the mixtures were analyzed by scanning electron microscopy (SEM).

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2473 ◽  
Author(s):  
Xiuwen Liu ◽  
Michael Pujari-Palmer ◽  
David Wenner ◽  
Philip Procter ◽  
Gerard Insley ◽  
...  

The aim of the present study was to evaluate the soft tissue bond strength of a newly developed, monomeric, biomimetic, tissue adhesive called phosphoserine modified cement (PMC). Two types of PMCs were evaluated using lap shear strength (LSS) testing, on porcine skin: a calcium metasilicate (CS1), and alpha tricalcium phosphate (αTCP) PMC. CS1 PCM bonded strongly to skin, reaching a peak LSS of 84, 132, and 154 KPa after curing for 0.5, 1.5, and 4 h, respectively. Cyanoacrylate and fibrin glues reached an LSS of 207 kPa and 33 kPa, respectively. αTCP PMCs reached a final LSS of ≈110 kPa. In soft tissues, stronger bond strengths were obtained with αTCP PMCs containing large amounts of amino acid (70–90 mol%), in contrast to prior studies in calcified tissues (30–50 mol%). When αTCP particle size was reduced by wet milling, and for CS1 PMCs, the strongest bonding was obtained with mole ratios of 30–50% phosphoserine. While PM-CPCs behave like stiff ceramics after setting, they bond to soft tissues, and warrant further investigation as tissue adhesives, particularly at the interface between hard and soft tissues.


2013 ◽  
Vol 1569 ◽  
pp. 33-38 ◽  
Author(s):  
Yuan Liu ◽  
Hao Zhan ◽  
Sarah Skelton ◽  
Bruce P. Lee

ABSTRACT4-arm poly(ethylene glycol) end-capped with mimics of adhesive moiety found in mussel adhesive protein, dopamine, was combined with a biocompatible nano-silicate, Laponite, in creating a nanocomposite hydrogel with improved materials and adhesive properties. Dopamine’s ability to form both irreversible covalent (cohesive and interfacial) and reversible physical (with Laponite) crosslinks was exploited in creating an injectable tissue adhesive. Incorporation of Laponite did not interfere with the curing of the adhesive. In some instances, increasing Laponite content reduced gelation time as dopamine-Laponite bond reduced the required number of covalent bonds needed for network formation. Incorporation of Laponite also increased compressive materials properties (e.g., max strength, energy to failure, etc.) of the nanocomposite without compromising its compliance as strain at failure was also increased. From lap shear adhesion test using wetted pericardium as the substrate, incorporating Laponite increased work of adhesion by 5 fold over that of control. Strong, physical bonds formed between dopamine and Laponite increased bulk materials properties, which contributed to the enhanced adhesive properties.


2011 ◽  
Vol 492 ◽  
pp. 61-65 ◽  
Author(s):  
Yuan Tian ◽  
Yi Wang Bao ◽  
De Tian Wan ◽  
Xiu Fang Wang ◽  
Zhi Ming Han

Laminated glass and photovoltaic laminated glass are widely used in architecture. The interfacial bonding strengths between poly(vinyl butyral) (PVB) and glass were investigated by the cross-bonding method from room temperature to -50 °C. The loading speed was 5 mm/min, and the cooling speed was about 0.5 °C/min. The testing sample was hold at each temperature for half an hour. It was revealed that the testing temperature had great effect on the bonding strength. At room temperature, the tensile bonding strength was 11.49 MPa and the shear bonding strength was 6.61 MPa. With the temperature decreased from RT to -50 °C, the tensile bonding strength was decreased by 66.81%, but the shear bonding strength was increased by 212.16%. From RT to -30 °C, the change rates of the tensile and shear bonding strength bonding strength were 65.57% and 172.68% respectively, only 3.61% and 14.48% from -30 °C to -50 °C. The mechanism for the bonding strength depended on testing temperatures from RT to -50 °C was also discussed.


2019 ◽  
Vol 11 (41) ◽  
pp. 38232-38239 ◽  
Author(s):  
Daniel Bermejo-Velasco ◽  
Sandeep Kadekar ◽  
Marcus Vinicius Tavares da Costa ◽  
Oommen P. Oommen ◽  
Kristofer Gamstedt ◽  
...  

2017 ◽  
Vol 32 (5) ◽  
pp. 612-621 ◽  
Author(s):  
Zhiwen Zeng ◽  
Xiumei Mo

In this paper, a novel chitosan derivative, thiol-grafting bio-inspired catechol-conjugated chitosan was synthesized. The chemical structure of the synthesized catechol-conjugated chitosan was verified by 1H NMR, and its contents of thiol group and catechol group were determined by UV-vis spectrum. Four percent of catechol-conjugated chitosan aqueous solution could form hydrogels rapidly in situ in 1 min or less with the addition of sodium periodate. Rheological studies showed that the mechanical properties depend on the concentrations of catechol-conjugated chitosan and the molar ratio of sodium periodate to catechol groups. Additionally, the adhesive properties of the resulting adhesives were evaluated, and the adhesion strength of obtained adhesives was as high as 50 kPa because of the complex and multiple interactions, especially the anti-oxidation mechanism of thiol group. The in vitro cytotoxicity assays demonstrated an excellent biocompatibility of the catechol-conjugated chitosan hydrogels. Benefiting from the in situ fast cured, desired mechanical strength, biocompatibility and relatively high adhesion performance, these properties suggested that catechol-conjugated chitosan hydrogel adhesives have potential applications as tissue adhesive for soft tissues.


2007 ◽  
Vol 330-332 ◽  
pp. 419-422 ◽  
Author(s):  
G.S. Lee ◽  
Sang Bae Lee ◽  
Doug Youn Lee ◽  
Kyeong Jun Park ◽  
S.O. Kim ◽  
...  

Histoacryl® (N-butyl-2-cyanoacrylate) has been widely utilized as a tissue adhesive. The aim of this study was to evaluate the physical and adhesive properties of newly developed cyanoacrylate-based β-TCP composite systems. The β-TCP powder was modified on the surface with citric acid to make this material mixed with cyanoacrylate easily. The setting time of acidtreated β-TCP/ Histoacryl® systems was dramatically prolonged and the polymerization heat was significantly decreased compared to that of untreated β-TCP/Histoacryl® system. The shear bond strength of cyanoacrylate-based β-TCP composites decreased with addition of acid-treated β-TCP filler. The compressive strength of β-TCP/Histoacryl® composites increased strongly with increasing the amount of acid-treated β-TCP filler. The cytotoxicity of the β-TCP/Histoacryl® composites decreased with the increasing of the amount of added β-TCP. These results indicated that our novel β-TCP/Histoacryl® composites had the great potential to serve as adhesives or filling materials in the dental field.


Sign in / Sign up

Export Citation Format

Share Document