scholarly journals Modification of Conventional Sugar Juice Evaporation Process for Increasing Energy Efficiency and Decreasing Sucrose Inversion Loss

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 765
Author(s):  
Somchart Chantasiriwan

The evaporation process, boiler, and turbine are the main components of the cogeneration system of the sugar factory. In the conventional process, the evaporator requires extracted steam from the turbine, and bled vapor from the evaporator is supplied to the juice heater and the pan stage. The evaporation process may be modified by using extracted steam for the heating duty in the pan stage. This paper is aimed at the investigation of the effects of this process modification. Mathematical models of the conventional and modified processes were developed for this purpose. It was found that, under the conditions that the total evaporator area is 13,000 m2, and the inlet juice flow rate is 125 kg/s, the optimum modified evaporation process requires extracted steam at a pressure of 157.0 kPa. Under the condition that the fuel consumption rate is 21 kg/s, the cogeneration system that uses the optimum modified evaporation process yields 2.3% more power output than the cogeneration system that uses a non-optimum conventional cogeneration process. Furthermore, sugar inversion loss of the optimum modified process is found to be 63% lower than that of the non-optimum conventional process.

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 342 ◽  
Author(s):  
Somchart Chantasiriwan

The cogeneration system of a sugar factory consists of boiler, steam turbine, and sugar juice evaporation process. The multiple-effect evaporator used for the conventional sugar juice evaporation process is the forward-feed multiple-effect evaporator, in which steam and sugar juice flow in the same direction. The main objective of this paper is to investigate the energy efficiency of the backward-feed multiple-effect evaporator, in which steam and sugar juice flow in opposite directions, compared with that of the forward-feed multiple-effect evaporator. Mathematical models are developed for both multiple-effect evaporators, and used to compare the performances of two cogeneration systems that use the forward-feed and backward-feed multiple-effect evaporators. The forward-feed multiple-effect evaporator requires extracted steam from a turbine at one pressure, whereas the backward-feed multiple-effect evaporator requires steam extraction at two pressures. Both evaporators have the same total heating surface area, process the same amount of sugar juice, and operate at the optimum conditions. It is shown that the cogeneration system that uses the backward-feed multiple-effect is more energy efficient than the cogeneration system that uses the forward-feed multiple-effect because it yields more power output for the same fuel consumption.


2021 ◽  
Vol 45 (01) ◽  
pp. 19-25
Author(s):  
D. K. Vyas ◽  
N. Seth ◽  
J. J. Chavda

A biomass combustor based dryer was evaluated with different biomass for drying of ginger. Biomass combustor based dryer consists of fuel hopper, combustion chamber, heat exchanger, grate for proper combustion of the combustible gas, chimney, ambient air inlet, hot air outlet and drying chamber. The system was evaluated at five fuel consumption rate (1 to 5 kg.h–1) and five air flow rate (100, 150, 200, 300 and 400 m3.h–1) using maize cobs, sized wood and saw dust briquettes for ginger drying. The experimental performances show that the hot air temperature inside the dryer vary between 36 to 81ºC for maize cobs, 53 to 85ºC for sized wood and 49 to 87ºC for biomass briquettes at tested air flow rate and fuel consumption rate in the system. The maximum efficiency of the system was found at the fuel consumption rate of 1 kg.h–1 and 400 m3.h–1 air flow rate using maize cobs, sized wood and saw dust briquettes as fuel respectively. The cost of operation of ginger drying at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate was Rs. 32.76, 34.26, 34.76 and 55 per hour using maize cobs, sized wood, saw dust briquettes and mechanical drying system, respectively. Hence, the drying of ginger in biomass combustor based dryer using maize cobs at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate resulted in better performance.


Author(s):  
A. V. Gritsenko ◽  
◽  
K. V. Glemba ◽  

Theoretical investigation with reasoning of petrol fuel combustion in the ambient and ozone medium was made. Methods of carrying out the experiment using the engine loading method due to application of power of mechanical losses of deactivated cylinders were worked out. Experimental studies envisage determination of influence of ozone additive into fuel air mix on the basic effective ICE performance, for this purpose cyclic fuel consumption parameter was used. After the analysis of ICE performance methods and control techniques, its condition was evaluated, for this purpose a compressor meter was used with preliminary pressurization of cylinders. During the experiment in order to load the engine its third and fourth cylinders were switched off. The results showed that the utmost fuel efficiency is found at crankshaft rotation values of 1450 and 3350 min-1, when cyclic fuel consumption rate has values of 1,35 and 1,27 mg/cycle respectively, which makes 7,4 and 7,0 % from identical indicators without ozonation of air mass at the same rotations. In general, the effect of fuel air mix ozonation makes it possible to develop target petrol-operated engine rotations at smaller fuel consumption rate, this way increasing its energy efficiency.


2019 ◽  
Vol 7 (11) ◽  
pp. 402 ◽  
Author(s):  
Chao Sun ◽  
Haiyan Wang ◽  
Chao Liu ◽  
Ye Zhao

The demands for lower Energy Efficiency Operational Index (EEOI) reflect the requirements of international conventions for green shipping. Within this context it is believed that practical solutions for the dynamic optimization of a ship’s main engine and the reduction of EEOI in real conditions are useful in terms of improving sustainable shipping operations. In this paper, we introduce a model for dynamic optimization of the main engine that can improve fuel efficiency and decrease EEOI. The model considers as input environmental factors that influence overall ship dynamics (e.g., wind speed, wind direction, wave height, water flow speed) and engine revolutions. Fuel consumption rate and ship speed are taken as outputs. Consequently, a genetic algorithm is applied to optimize the initial connection weight and threshold of nodes of a neural network (NN) that is used to predict fuel consumption rate and ship speed. Navigation data from the training ship “YUMING” are applied to train the network. The genetic algorithm is used to optimize engine revolution and obtain the lowest EEOI. Results show that the optimization method proposed may assist with the prediction of lower EEOI in different environmental conditions and operational speed.


Author(s):  
Wei Wang ◽  
Yu-ting Wu ◽  
Guo-dong Xia ◽  
Chong-fang Ma ◽  
Jing-fu Wang ◽  
...  

Improving thermodynamic efficiency of prime movers is the key issue for efficient utilization of low temperature heat resources. Because of many good characteristics, the single screw expander is perhaps a good choice. Precisions in manufacture and assembly are very important factors to the performance of single screw expanders. In this paper, experimental results of the first single screw expander prototype made by ourselves was analyzed and reported for the first time. From the experimental data, the power output of the prototype was about 5kW, but the gas consumption rate was above 105kg/kWh, so the shaft efficiency was only 34% or so. The results indicated that internal leakage was very serious. Hence, the second single screw expander prototype was manufactured. The gap between gate rotor and shell of the new prototype was reduced. The gap is about 0.02mm. From the new experimental data, the mass flow rate was significantly decreased. However, the power output was only 1.4kW. So, the gas consumption rate was even more than the first prototype. The reason of bad experimental results may arise from the too large friction between screw, gate rotor and shell in the case of small gap. So, we manufactured the third single screw expander prototype, which is 0.04mm in gap. From the experimental data, the maximum power output was about 4.5kW, but the mass flow rate was decreased sharply. So the gas consumption rate was about 60kg/kWh, and the shaft efficiency was about 60%. The result indicated that the performance of the single screw expander was remarkable improved by optimizing its configuration.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1327
Author(s):  
Dwinanto Sukamto ◽  
Monica Siroux ◽  
Francois Gloriant

The building sector is the largest consumer of energy, but there are still major scientific challenges in this field. The façade, being the interface between the exterior and interior space, plays a key role in the energy efficiency of a building. In this context, this paper focuses on a ventilated bioclimatic wall for nearly zero-energy buildings (NZEB). The aim of this study is to investigate an experimental setup based on a hot box for the characterization of the thermal performances of the ventilated wall. A specific ventilated prototype and an original thermal metrology are developed. This paper presents the ventilated prototype, the experimental setup, and the experimental results on the thermal performances of the ventilated wall. The influence of the air space thickness and the air flow rate on the thermal performances of the ventilated wall is studied.


2021 ◽  
pp. 108201322199161
Author(s):  
Merve Tuçe Tunç ◽  
Arda Akdoğan ◽  
Cemalettin Baltacı ◽  
Zeliha Kaya ◽  
Halil İbrahim Odabaş

Pekmez is a concentrated syrup-like food conventionally produced by vacuum evaporation process from sugar-rich fruits. In this study, the applicability of grape pekmez production by ohmic heating assisted vacuum evaporation (ΩVE) method was investigated. Conventional vacuum evaporation (CVE) and ΩVE methods were compared in terms of physicochemical properties, HMF (5-hydroxymethylfurfural) contents, rheological properties, and energy consumptions. ΩVE was run at four different voltage gradients (17.5, 20, 22.5, and 25 V/cm). Total process times for grape pekmez production were determined as 57, 28.5, 32, 39, and 50 minutes for CVE, ΩVE (25 V/cm), ΩVE (22.5 V/cm), ΩVE (20 V/cm) and ΩVE (17.5 V/cm), respectively. Energy consumption of CVE method was higher than ΩVE method for all voltage gradients. Energy efficiency increased as the voltage gradient increased. There was no significant difference between CVE and ΩVE methods for HMF contents. The results show that the ΩVE method could be an alternative to the CVE process for grape pekmez production.


Author(s):  
Mohamad Modrek ◽  
Ali Al-Alili

Photovoltaic thermal collectors (PVT) combines technologies of photovoltaic panels and solar thermal collectors into a hybrid system by attaching an absorber to the back surface of a PV panel. PVT collectors have gained a lot of attention recently due to the high energy output per unit area compared to a standalone system of PV panels and solar thermal collectors. In this study, performance of a liquid cooled flat PVT collector under the climatic conditions of Abu Dhabi, United Arab Emirates was experimentally investigated. The electrical performances of the PVT collector was compared to that of a standalone PV panel. Moreover, effect of sand accumulation on performance of PVT collectors was examined. Additionally, effect of mass flow rate on thermal and electrical output of PVT collector was studied. Electrical power output is slightly affected by changes in mass flow rate. However, thermal energy increased by 22% with increasing flow rate. Electrical power output of a PV panel was found to be 38% lower compared to electrical output of PVT collectors. Dust accumulation on PVT surface reduced electrical power output up to 7% compared with a reference PVT collector.


2013 ◽  
Vol 848 ◽  
pp. 286-290 ◽  
Author(s):  
Hong Juan Ren ◽  
Di Ming Lou ◽  
Pi Qiang Tan ◽  
Zhi Yuan Hu

Urea dosing strategy for SCR is studied for a diesel engine fuelled with bio-diesel BD20. Bio-diesel BD20 is consisted of biofuels made from waste cooking oil and national V diesel, and biofuels accounts for 20% by volume. The results show that, bio-diesel engine torque decreases by a maximum of 0.55%, brake fuel consumption rate increases by a maximum of 0.53% ,when the urea dosing strategy is adjusted and the engine and SCR are not changed. ESC tests show that, the maximum of NOXconversion ratio is 95%, the minimum is 57%, and the average value is 74% under ESC 12 conditions except idling, the maximum of HC decrease ratio is 74%, the minimum is 35%, and the average value is 55%, when the urea is dosed. NOXemission is 1.55 g/(kW·h) in ESC test, NOXemission is 2 g/(kW·h) in ETC test, and NH3slip is lower than 10×10-6, which proves that the NOXemission from the engine fuelled with BD20 can meet national emission standards V by adjusting the urea dosing strategy.


Sign in / Sign up

Export Citation Format

Share Document