scholarly journals Potential Dynamics of CO2 Stream Composition and Mass Flow Rates in CCS Clusters

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1188
Author(s):  
Sven-Lasse Kahlke ◽  
Martin Pumpa ◽  
Stefan Schütz ◽  
Alfons Kather ◽  
Heike Rütters

Temporal variations in CO2 stream composition and mass flow rates may occur in a CO2 transport network, as well as further downstream when CO2 streams of different compositions and temporally variable mass flow rates are fed in. To assess the potential impacts of such variations on CO2 transport, injection, and storage, their characteristics must be known. We investigated variation characteristics in a scenario of a regional CO2 emitter cluster of seven fossil-fired power plants and four industrial plants that feed captured CO2 streams into a pipeline network. Variations of CO2 stream composition and mass flow rates in the pipelines were simulated using a network analysis tool. In addition, the potential effects of changes in the energy mix on resulting mass flow rates and CO2 stream compositions were investigated for two energy mix scenarios that consider higher shares of renewable energy sources or a replacement of lignite by hard coal and natural gas. While resulting maximum mass flow rates in the trunk line were similar in all considered scenarios, minimum flow rates and pipeline capacity utilisation differed substantially between them. Variations in CO2 stream composition followed the power plants’ operational load patterns resulting e.g., in stronger composition variations in case of higher renewable energy production.

Author(s):  
Cheikh Sidi Ethmane Kane ◽  
Labouda Ba ◽  
Gildas Tapsoba ◽  
Marie-Christine Record ◽  
Fanta Haidara

For decades, Mauritania's economy has been fueled by thermal power.  As a developing economy, Mauritania's electricity demand has long been relatively low, though it has increased recently due to economic growth, urbanization, and industrial activities. The rapid growth in demand is making the country more dependent on oil and gas-based generation power plants, which a resultant drain on the national economy. However, Mauritania has abundant renewable energy potential. the deployment of renewable energy can be an alternative solution to reduce the dependence on fossil resources. In this paper, we have reviewed the situation of the power generation sector, the potential of renewable energy, the integration of renewable energy in Mauritania's energy mix and the mitigation potential. The installed capacity in 2018 is 415.5 MW. The percentage of thermal power plants is 59.8% and 40.2% of the integrated capacity is provided by renewable energy. In 2018, the total electric power generation was 1958.5 GWh, the contribution of renewable energy was 979.75 GWh. The IPCC 2006 methodology was used to estimate GHG emissions. The results showed that the integration of renewable energy into the country's energy mix reduced emissions by approximately 212.58 Gg CO2eq.


2021 ◽  
Vol 343 ◽  
pp. 09002
Author(s):  
Danut Grecea ◽  
Marin Silviu Nan ◽  
Cristian Aron ◽  
Cosmin Vitan ◽  
Bogdan Tomus

The general topic of this paper is to study the possibilities of using renewable energy sources to supply urban consumers electricity, consumers located in areas affected by industrial restructuring. This carries out a comprehensive study on the possibilities of using renewable energy sources in the Motru Basin area. Moreover, creation a mix capable of producing the electricity needed by the inhabitants, in household consumption and not only, is being studied. The entry of free energy market has brought about the alignment with competitive conditions and observance of pollution regulations in force, and energy production has determined retrofitting or restriction of the activity of some thermal power plants due to non-competitive costs for primary energy resources. Our country has a diversified and balanced energy mix (hydropower, nuclear energy, coal and natural gas) but it must be complemented by renewable sources (wind, solar, biomass) to provide stability and energy safety prospects.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4624 ◽  
Author(s):  
Renata Marks-Bielska ◽  
Stanisław Bielski ◽  
Katarzyna Pik ◽  
Krystyna Kurowska

Exploitation of renewable energy sources for power generation has been more and more important in recent years. This results from the economic issues and the measures taken to ensure the energy security. The aim of this research was to determine the significance of renewable energy sources (RES) in the energy mix of Poland, and to elicit the opinions and the level of knowledge of the society on the use and development of non-conventional energy. The article also presents advantages and disadvantages of types of RES, the obstacles which hinder the progress of green energy in Poland, and the proposed measures to expand the share of the RES in the overall energy mix. The research relied on the statistical data gathered by Statistics Poland. The opinions of respondents were elicited through a diagnostic survey based on a questionnaire. The research has demonstrated that the respondents support the development of RES in Poland. However, they also maintain that the purchase and installation of devices for the production of non-conventional energy are too expensive. The respondents believe that in order to increase the number of green power plants, subsidies to encourage RES investment and tax reliefs related to this investment should be bigger.


2019 ◽  
Vol 53 (10) ◽  
pp. 5585-5595 ◽  
Author(s):  
Xiaodi Sun ◽  
Daniel B. Gingerich ◽  
Inês L. Azevedo ◽  
Meagan S. Mauter

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


Author(s):  
Seyedeh Asra Ahmadi ◽  
Seyed Mojtaba Mirlohi ◽  
Mohammad Hossein Ahmadi ◽  
Majid Ameri

Abstract Lack of investment in the electricity sector has created a huge bottleneck in the continuous flow of energy in the market, and this will create many problems for the sustainable growth and development of modern society. The main reason for this lack of investment is the investment risk in the electricity sector. One way to reduce portfolio risk is to diversify it. This study applies the concept of portfolio optimization to demonstrate the potential for greater use of renewable energy, which reduces the risk of investing in the electricity sector. Besides, it shows that investing in renewable energies can offset the risk associated with the total input costs. These costs stem from the volatility of associated prices, including fossil fuel, capital costs, maintenance, operation and environmental costs. This case study shows that Iran can theoretically supply ~33% of its electricity demand from renewable energy sources compared to its current 15% share. This case study confirms this finding and predicts that Iran, while reducing the risk of investing in electricity supply, can achieve a renewable energy supply of ~9% with an average increase in supply costs. Sensitivity analysis further shows that with a 10% change in input cost factors, the percentage of renewable energy supply is only partially affected, but basket costs change according to the scenario of 5–32%. Finally, suggestions are made that minimize risk rather than cost, which will bring about an increase in renewable energy supply.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jakub Jurasz ◽  
Jerzy Mikulik

Polish energy sector is (almost from its origin) dominated by fossil fuel feed power. This situation results from an abundance of relatively cheap coal (hard and lignite). Brown coal due to its nature is the cheapest energy source in Poland. However, hard coal which fuels 60% of polish power plants is picking up on prices and is susceptible to the coal imported from neighboring countries. Forced by the European Union (EU) regulations, Poland is struggling at achieving its goal of reaching 15% of energy consumption from renewable energy sources (RES) by 2020. Over the year 2015, RES covered 11.3% of gross energy consumption but this generation was dominated by solid biomass (over 80%). The aim of this paper was to answer the following research questions: What is the relation of irradiation values to the power load on a yearly and daily basis? and how should photovoltaics (PV) be integrated in the polish power system? Conducted analysis allowed us to state that there exists a negative correlation between power demand and irradiation values on a yearly basis, but this is likely to change in the future. Secondly, on average, daily values of irradiation tend to follow power load curve over the first hours of the day.


Sign in / Sign up

Export Citation Format

Share Document