scholarly journals Microalgae Biomolecules: Extraction, Separation and Purification Methods

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Priscila S. Corrêa ◽  
Wilson G. Morais Júnior ◽  
António A. Martins ◽  
Nídia S. Caetano ◽  
Teresa M. Mata

Several microalgae species have been exploited due to their great biotechnological potential for the production of a range of biomolecules that can be applied in a large variety of industrial sectors. However, the major challenge of biotechnological processes is to make them economically viable, through the production of commercially valuable compounds. Most of these compounds are accumulated inside the cells, requiring efficient technologies for their extraction, recovery and purification. Recent improvements approaching physicochemical treatments (e.g., supercritical fluid extraction, ultrasound-assisted extraction, pulsed electric fields, among others) and processes without solvents are seeking to establish sustainable and scalable technologies to obtain target products from microalgae with high efficiency and purity. This article reviews the currently available approaches reported in literature, highlighting some examples covering recent granted patents for the microalgae’s components extraction, recovery and purification, at small and large scales, in accordance with the worldwide trend of transition to bio-based products.

2019 ◽  
Vol 6 (1) ◽  
pp. 74-91 ◽  
Author(s):  
Shyam Suwal ◽  
Alice Marciniak

Polyphenols are high molecular weight, organic molecules mainly found in plant kingdom. They are mostly known for their positive impact on health, specifically for their antioxidant activity. Indeed, they are widely studied for the prevention of multiple diseases such as cancer, inflammatory, cardiovascular and neurodegenerative diseases. Nevertheless, extractions of these growing interest molecules remain challenging using conventional methods such as solvent extraction. That is why recent researches have focused on improving the extraction of polyphenol by using different technologies such as ultrasound, microwave, pressurized liquid, pulsed electric field, supercritical fluid and high hydrostatic pressure. In the current context, the assisted-extraction should demonstrate their potential to improve the extraction efficiency while being cost-effective and with a low environmental impact. To this end, technologies ought to, for instance, increase the solubility of polyphenol and the permeability of the cell wall. Consequently, this review is focused on the use and potential of these technologies to improve polyphenol extractions from plants as well as their purification using various methods. It discusses of the advantages and disadvantages with some examples of all these technologies assisted-extraction in comparison with conventional extraction method as well as purification technology.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Aleksandra Pieczykolan ◽  
Wioleta Pietrzak ◽  
Renata Nowak ◽  
Józefina Pielczyk ◽  
Karolina Łamacz

Tiliroside exhibits a wide spectrum of effects on the human body; considering expensive synthesis of tiliroside, linden trees seem to be a good source of this compound. For the first time, 46 various extraction methods were developed to receive tiliroside from Tilia L., including ultrasound-assisted extraction, maceration, maceration with stirring, accelerated solvent extraction, and extraction under reflux. The effects of extraction techniques, solvents, additives, and temperature on the content of tiliroside were studied using analytical and statistical methods. A new, rapid, simple, sensitive, and selective liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed to determine the content of tiliroside in Tilia L. flowers. The LC-ESI-MS/MS analysis demonstrated the highest content of tiliroside in Tilia L. flowers obtained using accelerated solvent extraction (ASE) where 70% ethanol with addition of 1% acetic acid was used as a solvent (7.400 ± 0.019 mg of tiliroside per g dry extract).The results showed that the extracts of Tiliae inflorescentia contained large amounts of tiliroside; therefore, they are good sources of this compound. Moreover, ASE was found to be superior to other extraction techniques due to its high efficiency as well as considerable saving of time and solvent.


Foods ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 106 ◽  
Author(s):  
Predrag Putnik ◽  
Jose Lorenzo ◽  
Francisco Barba ◽  
Shahin Roohinejad ◽  
Anet Režek Jambrak ◽  
...  

Some functional foods contain biologically active compounds (BAC) that can be derived from various biological sources (fruits, vegetables, medicinal plants, wastes, and by-products). Global food markets demand foods from plant materials that are “safe”, “fresh”, “natural”, and with “nutritional value” while processed in sustainable ways. Functional foods commonly incorporate some plant extract(s) rich with BACs produced by conventional extraction. This approach implies negative thermal influences on extraction yield and quality with a large expenditure of organic solvents and energy. On the other hand, sustainable extractions, such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), high-pressure assisted extraction (HPAE), high voltage electric discharges assisted extraction (HVED), pulsed electric fields assisted extraction (PEF), supercritical fluids extraction (SFE), and others are aligned with the “green” concepts and able to provide raw materials on industrial scale with optimal expenditure of energy and chemicals. This review provides an overview of relevant innovative food processing and extraction technologies applied to various plant matrices as raw materials for functional foods production.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Farzaneh Esmaeili ◽  
Mahnaz Hashemiravan ◽  
Mohammad Reza Eshaghi ◽  
Hassan Gandomi

Ultrasound-assisted extraction is a promising technique to obtain active compounds from plants with high efficiency. The present study was conducted in two sections. In the first phase, the effect of solvent type (methanol, ethanol, water, and water-ethanol (50 : 50, v/v)) on inulin extraction yield from burdock roots (Arctium lappa L.) was investigated by the conventional method. The second phase aim was to optimize the condition of inulin and phenolic compounds including sonication time (10–40 min), sonication temperature (40–70°C), and solid/solvent ratio (1 : 20–1:40 g/ml) using response surface methodology (RSM). The results demonstrated that the highest inulin efficiency was extracted by water in the conventional method, which is equal to 10.32%. The optimum conditions of ultrasound-assisted water extraction for independent variables including sonication time and temperature as well as solid/water ratio were 36.65 min, 55.48°C, and 1 : 35 g/ml, respectively, which were determined on the maximization of inulin and total phenol content and minimization of IC50. At this optimum condition, inulin yield, phenolic compounds, and IC50 were found to be 12.46%, 18.85 mg GA/g DW, and 549.85 µg/ml, respectively. Regarding the results of this research, ultrasound-assisted extraction can be used as an alternative to the conventional extraction methods in extracting bioactive compounds from medicinal plants because it may improve the mass transfer, reducing the extraction time and the solvent used.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1417
Author(s):  
Serena Carpentieri ◽  
Farid Soltanipour ◽  
Giovanna Ferrari ◽  
Gianpiero Pataro ◽  
Francesco Donsì

Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.


2010 ◽  
Vol 8 (2) ◽  
pp. 243-257 ◽  
Author(s):  
Anna Ebringerová ◽  
Zdenka Hromádková

AbstractIn view of the recent emphasis on non-conventional chemistry, application of ultrasound in isolation of plant polysaccharides represents a viable alternative to traditional extraction processes. This review presents an extensive literature survey of ultrasound-assisted extraction of polysaccharides from different plant materials, particularly herbal plants and secondary agricultural plant sources. Targeted, multistep methods were applied with respect to differences in the types of polysaccharides and their location in plant cell walls. The effectiveness of the methods was evaluated according to yield and properties of the isolated polysaccharides in comparison to classical extraction methods. Substantial shortening of extraction time, reduction of reagent consumption and/or extraction temperature are the most important advantages of the ultrasonic treatment. In combination with sequential extraction steps using different solvents, sonication was shown to be effective in separation and/or purification of polysaccharides. The disadvantages of the sonication treatment, such as degradation and compositional changes of the polysaccharide preparations are discussed as well.


2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


Author(s):  
Nithyakalyani K

Ficus benghalensis is one of those taboo plants in India, which was claimed to be possessed and have weird effects on human health. Apart from this ficus species has a great variety of chemical constituents and an abundant amount of antioxidants. Drying is the most critical stage of improving the activity or preventing the loss of chemical components from a drug. There is another stage of ensuring high chemical constituent content in the plant and that is the extraction procedure. So the point of focus in the current research is to find the effect of extraction method and drying on the anti-inflammatory potential of the plant. The result of the extraction method and drying method of the plant was investigated and found that the ultrasound-assisted extraction of the shade dried leaves was found to give the highest yield of flavonoids and activity.


Sign in / Sign up

Export Citation Format

Share Document