scholarly journals Anaerobic Degradation of Individual Components from 5-Hydroxymethylfurfural Process-Wastewater in Continuously Operated Fixed Bed Reactors

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 677
Author(s):  
Muhammad Tahir Khan ◽  
Johannes Krümpel ◽  
Dominik Wüst ◽  
Andreas Lemmer

Production of bio-based materials in biorefineries is coupled with the generation of organic-rich process-wastewater that requires further management. Anaerobic technologies can be employed as a tool for the rectification of such hazardous by-products. Therefore, 5-hydroxymethylfurfural process-wastewater and its components were investigated for their biodegradability in a continuous anaerobic process. The test components included 5-hydroxymethylfurfural, furfural, levulinic acid, and the full process-wastewater. Each component was injected individually into a continuously operating anaerobic filter at a concentration of 0.5 gCOD. On the basis of large discrepancies within the replicates for each component, we classified their degradation into the categories of “delayed”, “retarded”, and “inhibitory”. Inhibitory represented the replicates for all the test components that hampered the process. For the retarded degradation, their mean methane yield per 0.5 gCOD was between 21.31 ± 13.04 mL and 28.98 ± 25.38 mL. Delayed digestion was considered adequate for further assessments in which the order of conversion to methane according to specific methane yield for each component from highest to lowest was as follows: levulinic acid > furfural > 5-hydroxymethylfurfural > process-wastewater. Disparities and inconsistencies in the degradation of process-wastewater and its components can compromise process stability as a whole. Hence, the provision of energy with such feedstock is questionable.

2021 ◽  
pp. 124971
Author(s):  
Mostafa Ahmed ◽  
Fabio Sartori ◽  
Fabio Merzari ◽  
Luca Fiori ◽  
Sherien Elagroudy ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Indriyati Indriyati

Seeding in Fixed Bed anaerobic reactor are infl uenced by several condition such as the growth rate total population of microbial, bacterial adaption to infl uent and the retention of biomass in reactor. The aim of this observation is to fi nd out the seeding and acclimation process in anaerobic process by using plastic as support material. Seeding and acclimatization process run smoothly can be seen from the increasing of infl uent or substrate and following by the increasing degradation of soluble COD, beside that the decreasing of VSS concentration indicates that microorganism are all ready fi x in support material, therefore reactor can be operated continuously and the acclimatization process can be stopped.Keywords : anaerobic seeding, acclimation anaerobic process


1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


2020 ◽  
Vol 5 ◽  
pp. 100057 ◽  
Author(s):  
E.M. Moghaddam ◽  
E.A. Foumeny ◽  
A.I. Stankiewicz ◽  
J.T. Padding

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 689
Author(s):  
Thomas Eppinger ◽  
Nico Jurtz ◽  
Matthias Kraume

Fixed bed reactors are widely used in the chemical, nuclear and process industry. Due to the solid particle arrangement and its resulting non-homogeneous radial void fraction distribution, the heat transfer of this reactor type is inhibited, especially for fixed bed reactors with a small tube to particle diameter ratio. This work shows that, based on three-dimensional particle-resolved discrete element method (DEM) computational fluid dynamics (CFD) simulations, it is possible to reduce the maldistribution of mono-dispersed spherical particles near the reactor wall by the use of macroscopic wall structures. As a result, the lateral convection is significantly increased leading to a better radial heat transfer. This is investigated for different macroscopic wall structures, different air flow rates (Reynolds number Re = 16 ...16,000) and a variation of tube to particle diameter ratios (2.8, 4.8, 6.8, 8.8). An increase of the radial velocity of up to 40%, a reduction of the thermal entry length of 66% and an overall heat transfer increase of up to 120% are found.


2007 ◽  
Vol 42 (6) ◽  
pp. 727-734 ◽  
Author(s):  
E. Sánchez ◽  
L. Travieso ◽  
R. Borja ◽  
M. F. Colmenarejo ◽  
S. Nikolaeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document