scholarly journals Correction: Roato et al. A Novel Method to Optimize Autologous Adipose Tissue Recovery with Extracellular Matrix Preservation. Processes 2020, 8, 88

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 691
Author(s):  
Ilaria Roato ◽  
Federico Mussano ◽  
Simone Reano ◽  
Filippo Boriani ◽  
Andrea Margara ◽  
...  

The authors wish to remove every commercial reference reported in the discussion of the published paper in Processes [...]

Author(s):  
Ilaria Roato ◽  
Federico Mussano ◽  
Simone Reano ◽  
Filippo Boriani ◽  
Andrea Margara ◽  
...  

This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched of adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSCs yield was measured with flow cytometry after SVF isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugation with spectrophotometer analysis. Extracellular matrix preservation was assessed through H&E staining and biochemical assay for total collagen, type-2 collagen, and GAGs quantification. Flow cytometry showed a 2-fold increase of ATD-MSCs yield in treated samples in comparison with untreated lipoaspirate; no differences where reported when varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer’s lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product shows that Lipocell is an efficient method to purify the tissue from undesired byproducts, preserving ATD-MSCs vitality and ECM integrity, resulting in a promising tool for regenerative medicine applications.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88
Author(s):  
Ilaria Roato ◽  
Federico Mussano ◽  
Simone Reano ◽  
Filippo Boriani ◽  
Andrea Margara ◽  
...  

This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugation with spectrophotometer analysis. Extracellular matrix preservation was assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparison with untreated lipoaspirate; no differences where reported when varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer’s lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 53034-53042 ◽  
Author(s):  
Yongzhou Lu ◽  
Chuanlong Jia ◽  
Bo Bi ◽  
Liang Chen ◽  
Yiqun Zhou ◽  
...  

This study provides a novel method in injectable tissue engineering which contains porcine extracellular matrix (ECM) powder scaffolds and stromal-vascular fraction (SVF) cells.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 701-P
Author(s):  
PALLAVI VARSHNEY ◽  
BENJAMIN J. RYAN ◽  
CHIWOON AHN ◽  
MICHAEL W. SCHLEH ◽  
JEFFREY F. HOROWITZ

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P < 0.05), 16.7-fold (P < 0.01) and 3.1-fold (P < 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P < 0.05), COL4A (2.01-fold; P < 0.05), COL6A (2.8-fold; P < 0.05), biglycan (49.9- fold; P < 0.001), fibronectin (452-fold; P < 0.001), laminin (6.1-fold; P < 0.05), NID1(47.4-fold; P < 0.01), MMP9 (76.8- fold; P < 0.01), and TIMP3(3.04-fold; P < 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


2018 ◽  
Vol 5 (4) ◽  
pp. 91 ◽  
Author(s):  
Joris van Dongen ◽  
Martin Harmsen ◽  
Berend van der Lei ◽  
Hieronymus Stevens

The skin is the largest organ of the human body and is the first line of defense against physical and biological damage. Thus, the skin is equipped to self-repair and regenerates after trauma. Skin regeneration after damage comprises a tightly spatial-temporally regulated process of wound healing that involves virtually all cell types in the skin. Wound healing features five partially overlapping stages: homeostasis, inflammation, proliferation, re-epithelization, and finally resolution or fibrosis. Dysreguled wound healing may resolve in dermal scarring. Adipose tissue is long known for its suppressive influence on dermal scarring. Cultured adipose tissue-derived stromal cells (ASCs) secrete a plethora of regenerative growth factors and immune mediators that influence processes during wound healing e.g., angiogenesis, modulation of inflammation and extracellular matrix remodeling. In clinical practice, ASCs are usually administered as part of fractionated adipose tissue i.e., as part of enzymatically isolated SVF (cellular SVF), mechanically isolated SVF (tissue SVF), or as lipograft. Enzymatic isolation of SVF obtained adipose tissue results in suspension of adipocyte-free cells (cSVF) that lack intact intercellular adhesions or connections to extracellular matrix (ECM). Mechanical isolation of SVF from adipose tissue destructs the parenchyma (adipocytes), which results in a tissue SVF (tSVF) with intact connections between cells, as well as matrix. To date, due to a lack of well-designed prospective randomized clinical trials, neither cSVF, tSVF, whole adipose tissue, or cultured ASCs can be indicated as the preferred preparation procedure prior to therapeutic administration. In this review, we present and discuss current literature regarding the different administration options to apply ASCs (i.e., cultured ASCs, cSVF, tSVF, and lipografting) to augment dermal wound healing, as well as the available indications for clinical efficacy.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Michele Alves ◽  
Emidio Matos Neto ◽  
Linda Maximiliano ◽  
Paulo Alcantara ◽  
Jose Otoch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document