scholarly journals Transport Performance Improvement of a Multiphase Pump for Gas–Liquid Mixture Based on the Orthogonal Test Method

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1402
Author(s):  
Guangtai Shi ◽  
Helin Li ◽  
Xiaobing Liu ◽  
Zongku Liu ◽  
Binxin Wang

To improve the transport performance of a rotodynamic multiphase pump for a gas–liquid mixture, we took the head and efficiency index at rated flow rate with 15% inlet gas volume fraction as the indices, and used the orthogonal test design method and CFD technology to optimize. We selected the blade shroud angles at the leading edge and trailing edge, and axial length of the impeller, as well as the inlet incidence angle and blade number of the diffuser, and a total of five factors were used for the orthogonal test. The weight function was used to determine the final trial protocol. The results showed that the blade shroud angle at the trailing edge had the greatest influence on the head and efficiency indices. Under the rated flow rate with a 15% inlet gas volume fraction, the head and efficiency of the optimized pump were increased by 2.81 m and 5.6%, respectively, in comparison to the base pump. After the optimization, the partial fast-speed regions at the inlet of the impeller passage and the partial low-pressure regions on the blade suction side of the impeller disappeared, the accumulation of the gas phase on the blade suction side at the impeller outlet was suppressed, and the pumping performance of the impeller using the gas–liquid mixture was improved greatly. This study provides an important theoretical basis for the optimization and design of a multiphase pump.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 650
Author(s):  
Guangtai Shi ◽  
Dandan Yan ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Zekui Shu

The gas volume fraction (GVF) often changes from time to time in a multiphase pump, causing the power capability of the pump to be increasingly affected. In the purpose of revealing the pressure load characteristics of the multiphase pump impeller blade with the gas-liquid two-phase case, firstly, a numerical simulation which uses the SST k-ω turbulence model is verified with an experiment. Then, the computational fluid dynamics (CFD) software is employed to investigate the variation characteristics of static pressure and pressure load of the multiphase pump impeller blade under the diverse inlet gas volume fractions (IGVFs) and flow rates. The results show that the effect of IGVF on the head and hydraulic efficiency at a small flow rate is obviously less than that at design and large flow rates. The static pressure on the blade pressure side (PS) is scarcely affected by the IGVF. However, the IGVF has an evident effect on the static pressure on the impeller blade suction side (SS). Moreover, the pump power capability is descended by degrees as the IGVF increases, and it is also descended with the increase of the flow rate at the impeller inlet. Simultaneously, under the same IGVF, with the increase of the flow rate, the peak value of the pressure load begins to gradually move toward the outlet and its value from hub to shroud is increased. The research results have important theoretical significance for improving the power capability of the multiphase pump impeller.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 760
Author(s):  
Guangtai Shi ◽  
Sijia Tao ◽  
Xiaobing Liu ◽  
Haigang Wen ◽  
Zekui Shu

The axial flow screw-type oil-gas multiphase pump is mainly applied to oil and gas transport in the deep sea. In the process of transporting the multiphase medium, the gas volume fraction (GVF) on the gas phase changes from time-to-time, resulting in the performance of the oil-gas multiphase pump being greatly influenced by the gas phase. This paper presents a detailed analysis of the gas-phase distribution law and the vortex distribution in the flow passages within the oil-gas multiphase pump by means of numerical calculations, supplemented by experimental verification. The results show that the gas phase is mainly concentrated in the diffuser at different GVFs, and the gas phase gathering in the diffuser becomes more significant with the increase in the GVF. The gas-phase volume fraction increases gradually from rim to hub, that is, the gas-phase gathering degree increases. The maximum gas-phase volume distribution area is mainly concentrated in the area near the hub of the diffuser inlet and the middle blade height area at the outlet of the diffuser. The flow in the impeller is relatively stable under the different GVFs, while there is a large vortex near the inlet of the diffuser near the hub, and there is a backflow phenomenon between the outlet of the diffuser and the tip clearance of the impeller. The volume fraction of the gas phase near the rim fluctuates more than that near the hub because the gas phase is squeezed by the liquid phase more violently. The research results can provide theoretical guidance for the optimal design of oil-gas multiphase pump blades.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2293
Author(s):  
Jianwei Shi ◽  
Sijia Tao ◽  
Guangtai Shi ◽  
Wenwu Song

In the process of conveying a medium, when the inlet pressure is low, the cavitation phenomenon easily occurs in the pump, especially in the gas–liquid two-phase working condition. The occurrence of the cavitation phenomenon has a great impact on the performance of the multiphase pump. In this paper, the SST (sheard stress transport) k-ω turbulence model and ZGB (Zwart–Gerber–Belamri) cavitation model were used to simulate the helical axial flow multiphase pump (hereinafter referred to as the multiphase pump), and the experimental verification was carried out. The effect of gas volume fraction (GVF) on the energy loss characteristics in each cavitation stage of the multiphase pump is analyzed in detail. The study shows that the critical cavitation coefficient of the multiphase pump gradually decreases with the increase in GVF, which depresses the evolution of cavitation, and the cavitation performance of the multiphase hump is improved. The ratio of total loss and friction loss to total flow loss in the impeller fluid domain gradually increases with the development of cavitation, and the pressurization performance of the multiphase pump gradually decreases with the development of cavitation. The results of the study can provide theoretical guidance for the improvement of the performance of the multiphase pump.


2021 ◽  
Author(s):  
Abinash Barooah ◽  
Muhammad Saad Khan ◽  
Mohammad Azizur Rahman ◽  
Abu Rashid Hasan ◽  
Kaushik Manikonda ◽  
...  

Abstract Gas kick is a well control problem and is defined as the sudden influx of formation gas into the wellbore. This sudden influx, if not controlled, may lead to a blowout problem. An accidental spark during a blowout can lead to a catastrophic oil or gas fire. This makes early gas kick detection crucial to minimize the possibility of a blowout. The conventional kick detection methods such as the pit gain and flow rate method have very low sensitivity and are time-consuming. Therefore, it is required to identify an alternative kick detection method that could provide real-time readings with higher sensitivity. In this study, Electrical Resistance Tomography (ERT) and dynamic pressure techniques have been used to investigate the impact of various operating parameters on gas volume fraction and pressure fluctuation for early kick detection. The experiments were conducted on a horizontal flow loop of 6.16 m with an annular diameter ratio of 1.8 for Newtonian fluid (Water) with varying pipe inclination angle (0–10°) and annulus eccentricity (0–30%), liquid flow rate (165–265 kg/min), and air input pressure (1–2 bar). The results showed that ERT is a promising tool for the measurement of in-situ gas volume fraction. It was observed that the liquid flow rate, air input pressure and inclination has a much bigger impact on gas volume fraction whereas eccentricity does not have a significant influence. An increase in the liquid flow rate and eccentricity by 60% and 30% decreased the gas volume fraction by an average of 32.8% and 5.9% respectively, whereas an increase in the inclination by 8° increased the gas volume fraction by an average 42%. Moreover, it was observed that the wavelet analysis of the pressure fluctuations has good efficacy for real-time kick detection. Therefore, this study will help provide a better understanding of the gas-liquid flow and potentially provide an alternative method for early kick detection.


Author(s):  
Henrique Stel ◽  
Edgar Minoru Ofuchi ◽  
Rafael Fabrício Alves ◽  
Sergio Chiva ◽  
Rigoberto E. M. Morales

Abstract Centrifugal pumps operating with gas-liquid flows can undergo severe performance degradation. This can be attributed to an effect of the gas phase on the liquid flow orientation in the pump impeller channels, which induces additional hydraulic losses that negatively affect the delivered head and flow rate. Effort to investigate the effect of many operating parameters on the pump performance under multiphase flows can be found on numerous experimental investigations. Few studies, however, bring together flow visualization to understand the physics behind the behavior of centrifugal pumps with gas-liquid flows. One issue is that pumps involve rotating parts, metallic casing and limited visual access, sometimes making it hard to interpret flow patterns and to understand complex phenomena, such as bubble breakup and coalescence. Such issues usually lead to unsatisfactory image quality, which in turn makes it difficult to extract quantitative data from the obtained images, such as gas volume fraction and bubble size distribution. In an attempt to overcome many difficulties of previous investigations, this work presents an experimental study aimed to visualize gas-liquid flow patterns in a centrifugal rotor prototype using a novel approach. The experimental apparatus uses a plane and transparent rotor, assembled with an intake pipe and a discharge chamber by means of a dynamic seal system that dismisses the use of an enclosing pump casing. This makes possible to use back illumination of the impeller for visualization, which in turn is done by using a camera attached to the impeller axis for filming in a rotating frame of reference. This setup, which is new in the open literature, provides high image contrast and sharpness for clear interpretation of the flow patterns found inside the rotor channels for a wide range of operating conditions. This advantage, in turn, allows using image processing for quantitative assessment of gas volume fraction distributions. Pressure rise versus flow rate curves are measured together to investigate the rotor performance degradation associated with the gas-liquid flow patterns for a range of liquid and gas flow rates. Information obtained with the designed experimental setup at controlled conditions help not just to bring further understanding to the complex phenomena involved with multiphase flows in rotating devices, but also in the direction of validating a numerical model for reliable simulations of gas-liquid flows in centrifugal pumps, which is lacking in the current literature.


2011 ◽  
Vol 52-54 ◽  
pp. 399-404 ◽  
Author(s):  
Jin Ya Zhang ◽  
Hong Wu Zhu ◽  
Huan Wei ◽  
Jing Ying Peng

A 5-stage helico-axial multiphase pump was tested for studying its performance. The multiphase pump was tested on the conditions of different speed and different gas volume fraction (GVF). According to the test result, performances of the pump were analyzed. And the effects of speed and GVF to differential pressure and efficiency as well as to power of the pump were analyzed at the same time, so some conclusions were made basing of the above research and some of them are very helpful for the future application on the oilfield.


2021 ◽  
Author(s):  
Åge Hofstad ◽  
Tarje Olderheim ◽  
Magnus Almgren ◽  
Marianna Rondon ◽  
Edouard Thibaut ◽  
...  

Abstract The recent trend in the oil industry is to save CAPEX and exploit every offshore field to increase production and maximize reserves. Also, deeper water and longer step-out is a challenge for new fields. The most adapted technology to unlock these reserves is the use of subsea boosting like a multiphase pump on the seafloor. Subsea boosting has been used for decades with well proven results, but up to now, some limitations in power and lift pressure exist. This new multiphase pump development has increased the potential pressure generation manyfold from the typical ΔP of 50 bar (725 psi) at the beginning of the project. Developing such a powerful two-phase pump driven by a liquid-filled motor requires a unique combination of expertise in machinery engineering, electrical engineering, fluid mechanics and rotor dynamics. The objective of the co-authors is to share this experience by bringing some insights on what it takes to develop, test, and qualify such specific product. Outlines of the methodology will be described, key results will be detailed, and lessons learnt will be presented. The new design was fully tested first component-wise and then for a full-size prototype. A wide process envelope was mapped during the final qualification program with 3,000 points tested in the range 2,000-6,000 RPM and 0 - 100% GVF (Gas Volume Fraction). Qualification tests concluded with more than 2,000 cumulative hours. The main challenges in this program were the development of an innovative multiphase impeller and the qualification of the first MPP (MultiPhase Pump) with a back-to-back configuration. Concerning the motor, the development includes a high speed 6,000 RPM, 6 MW liquid-filled induction motor and a new stator winding insulation cable. With this new product, the pump market is ready to overcome challenges to produce deeper and further reservoirs in a constant evolutive oil and gas market.


2014 ◽  
Vol 6 ◽  
pp. 803972 ◽  
Author(s):  
Yongxue Zhang ◽  
Jinya Zhang ◽  
Hongwu Zhu ◽  
Shujie Cai

A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882335 ◽  
Author(s):  
Jinsong Zhang ◽  
Honggang Fan ◽  
Wei Zhang ◽  
Zhifeng Xie

Deep sea oil resources worldwide possess great potential for exploration; however, multiphase medium technology requires urgent development. The multiphase pump has achieved great success as one of the most advanced machinery in underwater oil and gas exploration. Tip clearance is inevitable between the rotating and stationary components of the multiphase pump. In this study, tip clearance sizes of 0.0, 0.2, 0.5, and 0.8 mm are selected to investigate the effect of tip clearance on energy performance and flow characteristics of a multiphase pump. Results show that pressure rises decrease by 10.72%, 24.96%, and 41.39% with gas volume fraction = 0% under different tip clearance sizes, while the pressure rises decrease by 17.10%, 25.35%, and 38.11% with gas volume fraction = 10%. The dominant frequencies and maximum amplitudes of pressure fluctuation rise with the increase in tip clearance. The entrainment effect between the tip leakage flow and main flow in the impeller strengthens with the increase in tip clearance size; the induced vortex area and leakage flow rate also increase.


Sign in / Sign up

Export Citation Format

Share Document