scholarly journals Accumulation of Potentially Toxic Elements in Mosses Collected in the Republic of Moldova

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 471
Author(s):  
Inga Zinicovscaia ◽  
Constantin Hramco ◽  
Omari Chaligava ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
...  

For the second time, the moss biomonitoring technique was applied to evaluate the deposition of potentially toxic elements in the Republic of Moldova. The study was performed in the framework of the International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops. Moss Hypnum cupressiforme Hedw. samples were collected in May 2020 from 41 sampling sites distributed over the entire territory of the country. The mass fractions of 35 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Se, Rb, Sr, Sb, Cs, Ba, Cd, La, Ce, Sm, Eu, Tb, Hf, Ta, Th, Pb, and U) were determined using neutron activation analysis and atomic absorption spectrometry. Comparing with 2015/2016 moss survey data, significant differences in the mass fractions of Cr, As, Se, Br, Sr, Sb, Cd, Pb, and Cu were found. Main air pollution sources (natural processes, transport, industry, agriculture, mining) were identified and characterized using factor and correlation analyses. GIS maps were built to point out the zones with the highest element mass fractions and to relate this to the known sources of contamination. Contamination factor, geo-accumulation index, pollution load index, and potential ecological risk index were calculated to assess the air pollution levels in the country. According to the calculated values, Moldova can be characterized as unpolluted to moderately polluted, with low potential ecological risk related to the degree of atmospheric deposition of potentially toxic elements. The cities of Chisinau and Balti were determined to experience particular environmental stress and are considered moderately polluted.

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Saijun Zhou ◽  
Renjian Deng ◽  
Andrew Hursthouse

We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1532
Author(s):  
Jing Bai ◽  
Wen Zhang ◽  
Weiyin Liu ◽  
Guohong Xiang ◽  
Yu Zheng ◽  
...  

A field survey was conducted to determine the pollution grade, sources, potential ecological risk, and health risk of soil potentially toxic elements (PTEs) in Xikuangshan Mine (XKS), the largest antimony (Sb) deposit in the world. A total of 106 topsoil samples were collected from 6 sites in XKS to measure the concentrations of PTEs Cr, Zn, Cd, Pb, As, Hg, and Sb. The results show that the average concentrations of these elements at all six sites were generally greater than their corresponding background values in Hunan province, especially Sb, Hg, and As. Correlation and principal component analyses suggested that Cd, Zn, Pb, Hg, and Sb were primarily released from mining and other industrial and human activities, while Cr and As were mainly impacted by the parent material from pedogenesis. A risk index analysis showed that, overall, sites were at very high ecological risk, and Sb is the highest ecological risk factor, followed by Cd and Hg. According to health risk assessment, oral ingestion is the main non-carcinogenic and carcinogenic risk exposure route. The higher potentially non-carcinogenic and carcinogenic risks happen to the local children who live in the vicinity of mining area. It revealed that the mining and smelting processes of XKS have negatively influenced the local people, therefore, we should pay increasing attention to this practical issue and take effective measures to protect the ecology of XKS.


2021 ◽  
Author(s):  
Gevorg Tepanosyan ◽  
Norik Harutyunyan ◽  
Nairuhi Maghakyan ◽  
Lilit Sahakyan

Abstract This research aimed to assess the ecological status of the Hrazdan river section flowing through Yerevan. The distribution of toxic elements (Cr, V, As, Zn, Cu, Ni, Co, Mn, Pb, Ti, Mo, Fe, Ba), the bottom sediments pollution level and ecological risks, were assessed employing the contamination factor (CF), enrichment factor (EF), the potential ecological risk index (RI) and geoaccumulation index (Igeo). On sampling sites, water quality parameters (turbidity, DO, conductivity (EC), salinity, TDS, pH, T°C) were measured, as well. The correlation analysis revealed a significant correlation between Zn - Cu, Pb; Cu - Pb, Mo; Co - Fe, Ti pointing out the similar sources and origination of these elements. The results have indicated that the content of the studied elements in the Hrazdan bottom sediments exceed the background content in urban soils, which is due to a set of geological and anthropogenic factors. High contents of elements were determined on sampling sites spatially confined to the residential and industrial areas. According to EF and Igeo data, the priority bottom sediment contaminants are As, Pb, Mo, Zn, V, Cu. The RI value varies from 195.9 to 316.3 with the mean of 245.9 which corresponds to the moderate-level ecological risk. On the whole, a moderate (77.8%) and considerable (22.2%) ecological risk was revealed. An essential source of Pb, Cu, Zn, Mo contents was itentified to be the surface runoffs in urban environment.


2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Saba Shoukat ◽  
Shahla Nazneen ◽  
Sardar Khan ◽  
Urooj Zafar

This study was carried out to determine potentially toxic element (PTE) contamination and their potential ecological risk factors in shooting range soil. For this purpose soil samples were collected from different locations (left side, right side, shooting point, middle, and stop-butt) from the shooting range of Frontier Corps Training Centre (FCTC) present in Warsak, Peshawar. The soil samples were analyzed for pH, electrical conductivity (EC) and potentially toxic elements including Cd, Cr, Ni, Pb, and Zn. The strong acids digested extracts were analyzed using atomic absorption spectrophotometry to determine the concentrations of selected PTEs. The concentration of Pb was found to be maximum at stop-butt i.e. 2049 mg/kg and exceeded the United States Environmental Protection Agency (US-EPA) critical value of 400 mg/kg, while its concentrations at left, right, shooting point and middle were 14.0 mg/kg, 18.8 mg/kg, 47.4 mg/kg, and 18.2 mg/kg, respectively and exceeded the background level of normal soils which is 10 mg/kg for Pb. This study revealed that the shooting range soil was highly contaminated with Pb, and very high contamination factor and potential ecological risk for Pb was observed at stop-butt, very high contamination factor and potential ecological risk for Cd, while moderate contamination factor for Zn was observed at all locations of the shooting range. In Pakistan, the environmental perspective of shooting range soils is overlooked and there is a need to take steps to avoid such contamination of soils with Pb and other PTEs that can enter into food chains and can also leach to contaminate the aquifer. Replacement of vegetation of shooting range with PTE tolerant species, addition of soil conditioners and uncontaminated soil would reduce the mobility of these contaminants into aerial portions of plants and protect the groundwater contamination.


2021 ◽  
Vol 27 (4) ◽  
pp. 210232-0
Author(s):  
Julio Marín ◽  
Marinela Colina ◽  
Hilda Ledo ◽  
P.H.E. Gardiner

The evaluation of potential ecological risk of aquatic sediments associated with the presence of potentially toxic elements (PTE) determines its degree of danger on native biota. In this work, the potential ecological risk of V, Ti, Cr, Ni, Cu, Zn, As, Se, Cd, Sn, Hg and Pb in superficial sediments is explained in three different areas of Lake Maracaibo: El Tablazo Bay, Strait of Maracaibo and the lake itself, through a multi-guideline approach (elemental enrichment (enrichment factor, contamination degree, pollutant load index and geo-accumulation index), sediment quality guidelines and risk assessment code). The PTE levels ranged from < 0.025 to 176.722 mg·kg−1 DW, with an overall proportion of V > Ti > Pb > Zn > Cr > Cu > Ni > As > Cd > Se > Hg > Sn. The PTE concurrent effect on biota was El Tablazo Bay > lake > Strait of Maracaibo. The superficial sediments of Lake Maracaibo constitute a medium with a high potential ecological risk on estuarine biota. This is mainly due to the levels of As in El Tablazo Bay, Cd in the Strait of Maracaibo and Pb in the lake area. This represents a latent toxicity hazard for native biological communities and other associated organisms.


2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Barbara K. Klik ◽  
Zygmunt M. Gusiatin ◽  
Dorota Kulikowska

AbstractRemediation of soils contaminated with metal must ensure high efficiency of metals removal, reduce bioavailability of residual metals and decrease ecological risk. Thus, for comprehensive environmental soil quality assessment, different indices must be used. In this study, suitability of 8 indices was used for soil highly contaminated with Cu (7874.5 mg kg−1), moderately with Pb (1414.3 mg kg−1) and low with Zn (566.1 mg kg−1), washed in batch and dynamic conditions with both conventional and next-generation washing agents. The following indices were used: modified contamination factor (mCf), modified contamination factor degree (mCdeg), mobility factor (MF), reduced partition index (IR), potential ecological risk factor (Er,Z), modified potential ecological risk factor (Er,m), potential ecological risk index (RIZ) and modified ecological risk index (RIm). For mCf,mCdeg and IR own classification scale was proposed. It was proven that most useful indices for assessment of soil pollution with metals were mCf and mCdeg. The mCf together with the IR allow to simultaneous assessment of soil pollution and stability for individual metals. These indices were appropriate for soil contaminated with different concentrations of metals, washed under both hydrodynamic conditions using various washing agents and different effectiveness of metals removal. Thus, they may be considered as most useful for evaluation of remediation method, feasibility of washing agent and assessing soil quality after washing.


2020 ◽  
Vol 12 (17) ◽  
pp. 7224 ◽  
Author(s):  
Martin Brtnický ◽  
Václav Pecina ◽  
Tivadar Baltazár ◽  
Michaela Vašinová Galiová ◽  
Ludmila Baláková ◽  
...  

The environmental impacts of air transport and air transportation systems have become increasingly important and are heavily debated. The aim of the study was to determine the degree of soil contamination by the potentially toxic elements (Cu, Ni, Pb, and Zn) in the vicinity of the airport runway and to evaluate whether airport traffic has had factual toxic effects on airport vegetation. The overall assessment of soil contamination by means of the Nemerow integrated pollution index indicated slight pollution; evaluation by the geoaccumulation index evinced moderate contamination by Zn and nonexistent to moderate contamination by Cu, Ni, and Pb. A significant difference between the take-off and landing sections of the runway was not statistically confirmed. The vegetation risk assessment by means of the potential ecological risk index (RI) showed the low ecological risk, while the phytotoxicity test revealed an inhibition of up to 33.7%, with a slight inhibition of 16.7% on average, and thus low toxic effects of airport traffic on airport vegetation. The results of the linear regression model between phytotoxicity and RI manifested no relation between the two. The outcomes from other studies suggest that the range of elements and the extent of contamination can be highly variable at different airports and frequently affected by car traffic. Therefore, further research on this issue is needed for the more precise determination of the elements emitted by air traffic at airports.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1366
Author(s):  
Hyeryeong Jeong ◽  
Jin Young Choi ◽  
Jaesoo Lim ◽  
Kongtae Ra

We examined the pollution characteristics of potentially toxic elements (PTEs) in road dust (RD) from nine industrial areas in South Korea to assess PTE pollution levels and their environmental risks for devising better strategies for managing RD. The median concentrations (mg/kg) were in the order Zn (1407) > Cr (380) > Cu (276) > Pb (260) > Ni (112) > As (15) > Cd (2) > Hg (0.1). The concentration of PTEs was the highest at the Onsan Industrial Complex, where many smelting facilities are located. Our results show that Onsan, Noksan, Changwon, Ulsan, Pohang, and Shihwa industrial areas are heavily polluted with Cu, Zn, Cd, and Pb. The presence of these toxic elements in RD from the impervious layer in industrial areas may have a moderate to severe effect on the health of the biota present in these areas. The potential ecological risk index (Eri) for PTEs was in the decreasing order of Cd > Pb > Hg > Cu > As > Zn > Ni > Cr, indicating that the dominant PTE causing ecological hazards is Cd owing to its high toxicity. Our research suggests the necessity for the urgent introduction of an efficient management strategy to reduce RD, which adds to coastal pollution and affects human health.


2020 ◽  
Vol 4 (1) ◽  
pp. 35-41
Author(s):  
Doris Fovwe Ogeleka ◽  
Godswill Igoni Alaminiokuma

In this appraisal, heavy metal concentrations in soils from Zamfara State were enumerated approximately a decade after the lead poisoning saga using indexes of pollution. The area is enhancement with valuable ores and minerals including gold making mining the most lucrative business in the area. The soils were moderate to slightly basic with a pH range from 6.49 ± 0.12 to 7.96 ± 0.15 (water) and 6.15 ± 0.10 to 7.80 ± 0.17 (KCl). Contamination / pollution (C/P) values reported for cadmium, lead, zinc and copper was 42.66, 0.59, 0.85 and 3.04 in the respective order (severe contamination to excessive pollution). The contamination factor (CF) was greater than the highest factor of 6, indicating very high contamination. The calculated values for geochemical accumulation (Igeo) and ecological risk factor (ERf) for Cd, Pb, Zn and Cu was (19.26, 0.27, 0.38, 1.37) and (1280, 2.95, 0.85, 15.2) respectively while the potential ecological risk index (ERi) was 1299, indicating that the soils were perturbed (polluted). Considering the deleterious effects heavy metals could cause and the resultant health implications, there is need to further remediate the polluted areas so as to avert harm to organisms and humans would consume crops grown in such environment.


Sign in / Sign up

Export Citation Format

Share Document