scholarly journals Effects of Chemical Properties and Inherent Mineral Matters on Pyrolysis Kinetics of Low-Rank Coals

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2111
Author(s):  
Ziqi Zhu ◽  
Rihong Cong ◽  
Lingmei Zhou ◽  
Hao Zheng ◽  
Yanan Tu ◽  
...  

The kinetics during the pyrolysis process depend on both chemical structure and inherent mineral matters in coal, but normally, only one of these components is investigated in literature. In the present work, four low-rank coals were pyrolyzed in a thermogravimetric analyzer at a heating rate of 10 K/min in a constant nitrogen stream at a temperature up to 900 °C to study the pyrolysis behavior and kinetics. Two of the samples were raw coal (R-YL) and clean coal (C-YL) obtained through the washing process. The results showed that the coal-washing process mainly affected the inorganic part (mineral matters) and structure in coal, which did not largely change the chemical properties. The pyrolysis behavior in primary stage (before 550 °C) was mainly affected by the chemical properties of coal, while the pyrolysis behavior in higher temperature also depended on inherent mineral matters. The kinetics of four coals were obtained using the Coats–Redfern (CR) method with five theoretical models. The difference of E value was almost negligible for R-YL and C-YL, also showing that the coal-washing process did not largely change the chemical properties. The higher frequency factor A for clean coal C-YL showed a more porous structure due to the coal-washing process. The apparent activation energy E in the third stage was affected by the thermodynamic property of inherent minerals.

2021 ◽  
Vol 55 (6) ◽  
pp. 439-443
Author(s):  
Zhan-Ku Li ◽  
Hai-Tao Wang ◽  
Hong-Lei Yan ◽  
Jing-Chong Yan ◽  
Zhi-Ping Lei ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 2758-2762 ◽  
Author(s):  
Xi Jie Chu ◽  
Yong Gang Wang ◽  
Li Hong Zhao

The pyrolysis tests of Shenhua coal and Shenhua direct liquefaction residue have been carried out using thermogravimetric at the differential heating rate. The kinetic parameters k and E were calculated using DAEM method. Results show DAME model can describe the pyrolysis behavior of Shenhua coal within the range of 20% to 95%, the activation energy of coal pyrolysis ranges from 53.98 to 279.38 kJ/mol, and DAME model can describe the behavior of Shenhua direct liquefaction residue within the range of 10% to 80%, the activation energy of residue pyrolysis is about 170 kJ/mol. The results of which are basically consistent with the experimental data.


2019 ◽  
Vol 38 (1) ◽  
pp. 298-309
Author(s):  
Fredy Surahmanto ◽  
Harwin Saptoadi ◽  
Hary Sulistyo ◽  
Tri A Rohmat

The pyrolysis kinetics of oil-palm solid waste was investigated by performing experiments on its individual components, including empty fruit bunch, fibre, shell, as well as the blends by using a simultaneous thermogravimetric analyser at a heating rate of 10°C/min under nitrogen atmosphere and setting up from initial temperature of 30°C to a final temperature of 550°C. The results revealed that the activation energy and frequency factor values of empty fruit bunch, fibre, and shell are 7.58–63.25 kJ/mol and 8.045E-02–4.054E + 04 s−1, 10.45–50.76 kJ/mol and 3.639E-01–5.129E + 03 s−1, 9.46–55.64 kJ/mol and 2.753E-01–9.268E + 03, respectively. Whereas, the corresponding values for empty fruit bunch–fibre, empty fruit bunch–shell, fibre–shell, empty fruit bunch–fibre–shell are 2.97–38.35 kJ/mol and 1.123E-02–1.326E + 02 s−1, 7.95–40.12 kJ/mol and 9.26E-02–2.101E + 02 s−1, 9.14–50.17 kJ/mol and 1.249E-01–2.25E + 03 s−1, 8.35–45.69 kJ/mol and 1.344E + 01–4.23E + 05 s−1, respectively. It was found that the activation energy and frequency factor values of the blends were dominantly due to the role of the components with a synergistic effect occurred during pyrolysis.


2011 ◽  
Vol 695 ◽  
pp. 493-496 ◽  
Author(s):  
Yong Hui Song ◽  
Jian Mei She ◽  
Xin Zhe Lan ◽  
Jun Zhou

The pyrolysis characteristics of Jianfanggou(JFG) coal was studied using a thermo-gravimetric analyzer and the pyrolysis kinetic parameters were calculated at the different heating rate. The results showed the DTG curves under different heating rate had three peaks and the corresponding temperature were 100°C, 470°C and 750°C, the pyrolysis process can be divided into three stages conclusively. The maximum weight loss rate at 470°C indicated the major weight loss occurred in the second stage. The Tb, Tf and T∞ obtained under experiment situation. The results of the JFG coal pyrolysis kinetic showed the Tb, Tf and T∞ increased gradually with the accretion of the heating rate. In the meantime, the variation of frequency factor was consistent with the trend of activation energy.


2017 ◽  
Vol 156 ◽  
pp. 454-460 ◽  
Author(s):  
Huijuan Song ◽  
Guangrui Liu ◽  
Jinzhi Zhang ◽  
Jinhu Wu

2004 ◽  
Vol 148 (1) ◽  
pp. 38-42 ◽  
Author(s):  
V. Gómez-Serrano ◽  
M.C. Fernández-González ◽  
E.M. Cuerda-Correa ◽  
A. Macías-García ◽  
M.F. Alexandre-Franco ◽  
...  

2019 ◽  
Vol 679 ◽  
pp. 178337 ◽  
Author(s):  
Bojan Janković ◽  
Nebojša Manić ◽  
Ivana Radović ◽  
Marija Janković ◽  
Milica Rajačić

2019 ◽  
Vol 39 (9) ◽  
pp. 785-793 ◽  
Author(s):  
Jan Nisar ◽  
Muhammad Anas Khan ◽  
Ghulam Ali ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
...  

Abstract The present work reveals pyrolysis kinetics of polypropylene (PP) over zeolite modernite using thermogravimetry. The activation energy (Ea) and frequency factor (A) were calculated applying Ozawa Flynn Wall, Coats-Redfern, and Tang Wanjun methods. The Ea calculated by all the methods were found in accord with each other. The pyrolysis was also performed in a salt bath in the temperature range 350°C–390°C. It was observed that a temperature of 370°C is the optimum temperature for maximum liquid fuel production. Moreover, the amount of solid residue decreases with the rise in temperature. Similarly, gas fraction also shows linear relationship with temperature. The condensable and noncondensable fractions were collected and analyzed by gas chromatography-mass spectrometry. The fuel properties of the oil produced were assessed and compared with commercial fuel. These properties agree well with fossil fuel and therefore have potential applications as fuel.


Sign in / Sign up

Export Citation Format

Share Document